JOINT VENTURE BOARD OF DIRECTORS

OFFICERS
Harry Kellogg, Jr. – Co-Chair
Silicon Valley Bank
Russell Hancock – Co-Chair
Santa Clara County Board of Supervisors
Russell Hancock – President & CEO
Joint Venture: Silicon Valley Network

DIRECTORS
Harjinder Bajwa
SolarCon
Gregory Belanger
Comerica Bank
Frank Benest
City of Palo Alto
George Blumenthal
University of California at Santa Cruz
Steve Bochner
Wilson Sonsini Goodrich & Rosati
Ed Cannizzaro
KPMG LLP
Pat Dando
San Jose/Silicon Valley Chamber of Commerce
Chris Dawes
Lucile Packard Children’s Hospital
Darren Deffner
Pacific Gas and Electric
Chris DiGiorgio
Accenture Inc.
Dan Fenton
San Jose Convention & Visitor’s Bureau
Rick Fezell
Ernst & Young
Jon Friedenberg
El Camino Hospital
Timothy Haight
Mental College
Chet Haskell
Cogswell Polytechnical College
Joe Head
Summer Hill Homes
Kevin Healy
PriceWaterhouseCoopers LLP
Gary Hooper
Hooper and Associates
Beatriz Infante
VoiceObjects, Inc.
Hon. Rose Jacobs Gibson
San Mateo County Board of Supervisors
Mark Jensen
Deloitte & Touche LLP

SILICON VALLEY COMMUNITY FOUNDATION BOARD OF DIRECTORS

CHAIR
Patricia Bressee
Retired Commissioner, Superior Court of San Mateo County

VICE CHAIR
Nancy Handel
Corporate Executive

DIRECTORS
Laura Arrillaga-Andreessen
Stanford Graduate School of Business
Gloria Brown
Community Leader
Caretha Coleman
Coleman Consulting
Debra Engel
Community Leader
Bernadine Chuck Fong, Ph.D.
President Emerita, Fothill College
Thomas J. Friel
Retired Chairman, Heidrick & Struggles International, Inc.
Gregory Gallo
Dla Piper Rudnick Gray Cary LLP
Narendra Gupta
Wind River

INDEX ADVISORS
Bob Brownstein
Working Partnerships USA
Leslie Crowell
Santa Clara County
Mike Curran
NOVA Workforce Board
Chris DiGiorgio
Accenture
Jane Decker
County of Santa Clara
Jeff Fredericks
Colliers International
Marguerite Gong Hancock
Stanford University
Corinne Goodrich
San Mateo County Transit District
Chester Haskell
Cogswell Polytechnical College
James Koch
Santa Clara University
John Kreidler
Cultural Initiatives
Stephen Levy
Center for the Continuing Study of the California Economy
John Malbrie
County of San Mateo
Connie Martinez
1st Act

Dave Pearce
Miisole
AnnaLee Saxenian
University of California at Berkeley
Chris Seams
Cypress Semiconductor Corporation
Anthony Waitz
Quantum Insight
Kim Walesh
City of San Jose
Linda Williams
Planned Parenthood Mar Monte
Erica Wood
Silicon Valley Community Foundation

Prepared By:
COLLABORATIVE ECONOMICS
Doug Henton
John Melville
Tracey Grose
Gabrielle Maor
Heidi Young
Bridget Gibbons
Hope Verhulp
Dear Friends:

If the 2008 Index were a weather report, it would say we’re in for some stormy weather.

What’s causing it? Some local conditions, for sure, but mostly it’s a series of high-pressure systems outside Silicon Valley that send heavy winds gusting in: a sub-prime mortgage crisis, volatility in financial markets, and a rapidly changing global economy.

The good news is there is a real up-side to the kind of rapid change imposed by globalization, especially for an innovation-based economy like ours. The pages here show widespread productivity gains, as measured by value-added per employee, which rose for the sixth consecutive year and now surpass previous highs from the dot-com boom. We’re still adding jobs and experiencing population growth. Our share of patents reached an all-time high, and venture capital investment rose 11 percent. If the current trend continues, Silicon Valley will command 30 percent of the nation’s venture funding, a remarkable figure.

We should also point out that in the emerging area of clean technology, Silicon Valley has already staked out an early advantage. Our region claimed 62 percent of all cleantech venture funding in California, 21 percent of the nation’s.

It’s clear that our Valley’s unique mix of talent, technology, and capital translate into a genuine comparative advantage, and one way this is manifest is in real income gains. This year’s Index shows our region’s per capita income is 57 percent higher than the national average, and growing faster than the United States as a whole. We also report that for the first time in five years median household income rose.

But there is bad news too. Turbulence has meant progress for some and great difficulty for others, and this will be our region’s challenge for some time. As you’ll read in the Special Analysis section, we see a great deal of volatility in the Valley’s mid-wage occupations. Jobs have declined in a number of fields, while increasing in others, due in large part to the impact of globalization on our leading companies.

We’re encouraged that boomer retirements are creating thousands of mid-wage jobs for the region, but it’s not at all clear if those jobs will be filled by a home-grown workforce: high school graduation rates are still a problem; the reading proficiency of our region’s third graders is decreasing; large achievement gaps persist by race and ethnicity; and juvenile felony offenses rose for a fourth consecutive year.

We think Silicon Valley has to be as innovative in the civic arena as it is in the commercial one, if we are going to weather these turbulent times. That is one reason our two organizations teamed up in 2007, so we could help the region break new economic ground together.

We warmly welcome you to join us.

Sincerely,

Russell Hancock, Ph.D.
President & Chief Executive Officer
Joint Venture: Silicon Valley Network

Emmett D. Carson, Ph.D.
CEO & President
Silicon Valley Community Foundation
The geographical boundaries of Silicon Valley vary. The region’s core has been defined as Santa Clara County plus adjacent parts of San Mateo, Alameda and Santa Cruz counties. In order to reflect the expansion of the region’s driving industries and employment, the 2008 Index includes all of San Mateo County in the industry and employment analysis. In future years, all indicators currently reflecting the core region will also be expanded. The core of Silicon Valley is defined as the following cities:

Santa Clara County (all)
Campbell, Cupertino, Gilroy, Los Altos, Los Altos Hills, Los Gatos, Milpitas, Monte Sereno, Morgan Hill, Mountain View, Palo Alto, San Jose, Santa Clara, Saratoga, Sunnyvale

San Mateo County
Atherton, Belmont, East Palo Alto, Foster City, Menlo Park, Portola Valley, Redwood City, San Carlos, San Mateo, Woodside

Alameda County
Fremont, Newark, Union City

Santa Cruz County
Scotts Valley
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIAL ANALYSIS</td>
<td>4</td>
</tr>
<tr>
<td>INDEX AT A GLANCE</td>
<td>8</td>
</tr>
<tr>
<td>PEOPLE</td>
<td></td>
</tr>
<tr>
<td>Silicon Valley is drawing population from other U.S. and global regions at a stronger pace than California. These population inflows are highly educated and ethnically diverse.</td>
<td></td>
</tr>
<tr>
<td>Talents</td>
<td>10</td>
</tr>
<tr>
<td>ECONOMY</td>
<td></td>
</tr>
<tr>
<td>Though employment growth slowed, it expanded at a faster rate than the state or nation, adding nearly 28,000 jobs over the previous year. Venture capital investment and patent activity continue to grow and extend into new areas. Incomes and the cost of living are rising.</td>
<td></td>
</tr>
<tr>
<td>Innovation</td>
<td>14</td>
</tr>
<tr>
<td>Employment</td>
<td>20</td>
</tr>
<tr>
<td>Income</td>
<td>22</td>
</tr>
<tr>
<td>SOCIETY</td>
<td></td>
</tr>
<tr>
<td>Old challenges continue to confront the region in the areas of health and education where disparities by race/ethnic group persist. High school graduation rates dropped. Juvenile felony offenses increased slightly.</td>
<td></td>
</tr>
<tr>
<td>Preparing for Economic Success</td>
<td>24</td>
</tr>
<tr>
<td>Early Education</td>
<td>26</td>
</tr>
<tr>
<td>Arts and Culture</td>
<td>28</td>
</tr>
<tr>
<td>Health</td>
<td>30</td>
</tr>
<tr>
<td>Safety</td>
<td>32</td>
</tr>
<tr>
<td>PLACE</td>
<td></td>
</tr>
<tr>
<td>Improvements are underway in environmental quality and land use. Residents are changing habits and seeking out renewable energy sources. On the down-side, housing costs are rising and foreclosure rates are skyrocketing.</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>34</td>
</tr>
<tr>
<td>Land Use</td>
<td>40</td>
</tr>
<tr>
<td>Housing</td>
<td>42</td>
</tr>
<tr>
<td>Commercial Space</td>
<td>44</td>
</tr>
<tr>
<td>GOVERNANCE</td>
<td></td>
</tr>
<tr>
<td>The region continues to invest in its nonprofits, and its voters are increasingly independent. City revenues rose mainly due to property taxes.</td>
<td></td>
</tr>
<tr>
<td>Civic Engagement</td>
<td>46</td>
</tr>
<tr>
<td>Revenue</td>
<td>48</td>
</tr>
<tr>
<td>SPECIAL ANALYSIS continued</td>
<td>50</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>60</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>65</td>
</tr>
</tbody>
</table>
Silicon Valley is deeply integrated into the global network of innovative regions. The competition for talent, innovation and capital has increased dramatically, driving a restructuring of the Valley’s economy with a shift toward smaller, more nimble firms and higher value-added activities. This restructuring has resulted in a shift from long employer tenure linked with important social benefits such as health insurance and retirement to frequent job changes between employers who provide fewer and fewer benefits.

Economic restructuring and its quickening pace of change in the global economy is accompanied by growing turbulence and uncertainty in our communities.

See Special Analysis, 2007 Index of Silicon Valley, “Global Competition and Collaboration, Silicon Valley’s Place in the Global Network of Regions.”
The Flexible Economy and People

As businesses need the flexibility to quickly adapt to market changes in the ever-quickening global economy, employees are exposed to increased uncertainty. Firms are employing fewer people¹ and employee tenure is declining as people change jobs more frequently. In this setting incomes are prone to greater fluctuation, wage gaps are more prevalent and health and retirement benefits are less². Further, the demand for higher skills continues to rise and with it the earnings gap between the high and low-skilled is widening.

Structural Change in the Global Economy

In recent testimony before the U.S. House Ways and Means Committee, the Director of the Congressional Budget Office, Peter Orszag, posited that while macroeconomic fluctuations are now much milder than they were in the past, “households continue to experience substantial variability in their earnings and income, and that variability may now be much higher than in the past—perhaps contributing to anxiety among workers and families” (2007, 12). In addition to concerns about families maintaining a standard of living, this uncertainty translates into real concerns for policy makers faced with highly fluctuating tax revenues.

There are clearly positive and negative results of the global economic restructuring currently under way. Increased global interaction spurs the innovation process creating new technologies, new market opportunities, productivity gains, and wealth. Our firms need to be flexible to stay competitive; however, flexibility for firms translates into anxiety for our workers. The new employment environment is characterized by turbulence, uncertainty and the need for adaptability in the following ways:

- More frequent employer switches
- Shorter job tenure
- Required retraining/skills up-grading
- More frequent wage gaps and fluctuation
- Increasing self-employment
- Required geographic mobility

As the employment environment evolves and new skills are demanded, how is our region’s occupational mix changing and what new opportunities for earnings mobility are emerging in this new constant state of flux?

¹ Not only the size of a typical firm in Silicon Valley is shrinking (Zhang 2003, Dartila 2005), but growing numbers of people are earning incomes on their own as so-called “lone workers.” Since 2002, the number of businesses with no employees has been growing at a faster rate than the number of new jobs at firms. In 2005, these business owners without employees equated to 15% of total non-firm employment. From 2004 to 2005 the number of business owners with no employees grew by 8,490 while the number of jobs in firms with payroll grew by 6,490. These changes have significant consequences for workers in terms of continued access to vital benefits such as health insurance and retirement.

² Nationally the decline in health care coverage through employers has occurred in small firms and not large firms (Kim, et al 2007, 13). With health care costs rising faster than before, small firms are feeling the pressure. For Silicon Valley in particular, a region characterized by very small businesses (Zhang 2003) and high employee turnover (Basewon 1999), there are serious implications for maintaining access to quality health care in the region. In addition to health coverage, the traditional framework for retirement savings has been disrupted by falling job tenure.
Focusing on the Middle Ground: Opportunities, Challenges, Implications

In addition to world class engineering, design and other professional talent, our region demands skilled workers in mid-level occupations in a broad array of industries. The largest concentration of jobs in Silicon Valley is at the mid-wage level—paying between $30,000 and $80,000 per year. Just under half of all workers are drawing mid-level wages, while roughly one quarter are higher-wage employees and another quarter are lower-wage workers.

Technological advance generates not only new opportunities for design and new product development but also new occupational opportunities for technical support. While this is true for the Valley’s significant information technology sectors, growing biomedical and health technologist fields also exemplify these important relationships between high and mid-level occupations.

Beyond globally-oriented industry sectors, the Valley needs “jobs of place” that promote the essential quality of life of the region. These include health care professionals, teachers, public sector personnel as well as construction workers. These are mid-level jobs that are the foundation of the community. A coming wave of retirements in fields such as nursing, construction and public administration means the demand for foundational jobs is growing.

As industries evolve and labor force patterns shift, how is Silicon Valley’s occupational distribution changing and what new opportunities are emerging?

Occupational shifts and growing mid-wage opportunity

The number of mid-wage jobs in Silicon Valley has been shrinking in recent years—from 603,350 in 2002 to 541,300 in 2006. In 2002, mid-wage jobs comprised 52% of total jobs and 46% by 2006 (Figure 1). The percentage of higher-wage jobs remained relatively stable at 26% and 27%, while lower-wage jobs grew in share from 22% to 27% of the workforce over the four-year period.

The story, however, is more complicated than the loss of mid-wage jobs in Silicon Valley. The region’s 541,300 mid-wage jobs are distributed across 523 different occupations. Of all these occupations, half grew and half lost jobs between 2002 and 2006.

Figure 1

Job Distribution by Low, Mid, and High Income Levels

<table>
<thead>
<tr>
<th>Income Level</th>
<th>2002</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Wage Level >$80,000</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>Mid Wage Level $30,000 - $80,000</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Low Wage Level <$30,000</td>
<td>50%</td>
<td>51%</td>
</tr>
</tbody>
</table>

100% |

Note: Silicon Valley includes data for Santa Clara County and San Mateo County. Distribution based on inflation-adjusted median annual earnings. Analysis CEI
Depicted in Figure 2 is a selection of top growing and top declining mid-wage occupations in absolute numbers. Of all top growing mid-wage occupations, occupations with primary activities in the fields of Health, Construction and Information Technology (I.T.) Systems Support were most frequent. Overall, these are foundational occupations in that their primary activities serve the local population. In the case of IT Systems Support, as technology permeates the full extent of the economy, so too do occupations such as Computer Support Specialists.

Gains and losses are taking place in foundational jobs as well as in jobs closely linked to export-oriented technology industries. In absolute numbers, mid-wage occupational growth between 2002 and 2006 was greatest for Electricians increasing by 2,200 and Plumbers increasing by more than 1,400 people. Medical Assistants, Biological Technicians and Computer Support Specialists each expanded their numbers by about 1,000 in Silicon Valley. In contrast, in addition to general administrative support positions, Semiconductor Processors and Electrical & Electronic Engineering Technicians were some of the occupations that shed the most jobs in Silicon Valley over the same four-year period.

The middle ground is shifting in several ways:

- Declining mid-wage occupations include general support jobs—such as Secretaries, General Office Clerks, and Customer Service Representatives.
- Other declining mid-wage jobs are special support occupations in the region’s technology industries—such as Electrical Engineering Technicians and Semiconductor Processors.
- Biological Technicians are growing in number and are located in foundational jobs such as hospitals and medical labs as well as in the biotech industry.
- Growing mid-wage foundational occupations include Electricians, Plumbers and Medical Assistants.
- Important across the entire economy, Computer Support Specialists are critical to any business or organization employing information technology.
THE 2008 INDEX

AT A GLANCE

WHAT IS THE INDEX?
The Silicon Valley Index has been telling the Silicon Valley story since 1995. Released early every year, the indicators measure the strength of our economy and the health of our community—highlighting challenges and providing an analytical foundation for leadership and decision making.

WHAT IS AN INDICATOR?
Indicators are measurements that tell us how we are doing; whether we are going up or down, going forward or backward, getting better or worse, or staying the same.

Good indicators:
• are bellwethers that reflect fundamentals of long-term regional health;
• reflect the interests and concerns of the community;
• are statistically measurable on a frequent basis; and
• measure outcomes, rather than inputs.

Appendix A provides detail on data sources for each indicator.

WHAT IS AN INDUSTRY CLUSTER?
Several of the economic indicators relate to “industry clusters.” An industry cluster is a geographic concentration of interdependent, internationally competitive firms in related industries, and includes a significant number of companies that sell their products and services outside the region. Healthy, outward-oriented industry clusters are a critical prerequisite for a strong economy.

Appendix B identifies the specific subsectors included in each cluster.

THE INDEX

WHAT IS THE INDEX?
The Silicon Valley Index has been telling the Silicon Valley story since 1995. Released early every year, the indicators measure the strength of our economy and the health of our community—highlighting challenges and providing an analytical foundation for leadership and decision making.

WHAT IS AN INDICATOR?
Indicators are measurements that tell us how we are doing; whether we are going up or down, going forward or backward, getting better or worse, or staying the same.

Good indicators:
• are bellwethers that reflect fundamentals of long-term regional health;
• reflect the interests and concerns of the community;
• are statistically measurable on a frequent basis; and
• measure outcomes, rather than inputs.

Appendix A provides detail on data sources for each indicator.

WHAT IS AN INDUSTRY CLUSTER?
Several of the economic indicators relate to “industry clusters.” An industry cluster is a geographic concentration of interdependent, internationally competitive firms in related industries, and includes a significant number of companies that sell their products and services outside the region. Healthy, outward-oriented industry clusters are a critical prerequisite for a strong economy.

Appendix B identifies the specific subsectors included in each cluster.
About the 2008 Index | 01
Map of Silicon Valley | 02
Table of Contents | 03
Special Analysis | 04
Index at a Glance | 08
People | 10
Economy | 14
Governance | 24
Society | 28
Place | 34
Economy | 46

Old challenges continue to confront the region in the areas of health and education where disparities by race/ethnic group persist. High school graduation rates dropped. Juvenile felony offenses increased slightly. The region’s arts organizations are growing in number with decreasing funding.

Improvements are underway in environmental quality and land use. Residents are changing habits in water consumption and transportation and they are installing solar and wind systems. On the down-side, housing costs are rising and foreclosure rates are skyrocketing.

The region continues to invest in its nonprofits, and its voters are increasingly independent. City revenues rose mainly due to property taxes. Although the region accounts for roughly 7% of the state’s population, Silicon Valley residents accounted for 15% of State revenues from personal income tax.

SOCIETY

PLACE

GOVERNANCE

Rate of Immunization for Children Ages 19-35 Months

Child immunization rates are **not improving** and are not closer to the Healthy People 2010 Goal of 90%.

Health Insurance Coverage Varies by Language

Juvenile felony offenses per capita 2005-2006

SV +1.3%

CA +3.9%

Funding for the Arts 2004-2005

Revenues -13%

Expenses -17%

Contributions -3%

6% Water Consumption

Kilowatts added through Solar & Wind Systems: +21%

Transit ridership: +3.4%

11% of all hybrid vehicles in California are registered in Silicon Valley

2007: Share of new housing approved near transit

55%

New Approved Residential Developments

1998 – 7 Units per Acre

2007 – 21 Units per Acre

Rental Rates 2006-07: +7%

2007 foreclosure rates 4x previous year

Nonprofits Continue to Grow

1995 1951

2005 3082

Registered Voters with No Party Affiliation

SV 23%

CA 19%

Change in City Revenues from Previous Year

Property Taxes +37%

Sales Taxes -22%

In 2005, Silicon Valley accounted for 15% of CA State revenues from personal income tax
Talent Flows and Diversity

Silicon Valley is attracting stronger population inflows than the State as a whole. These population flows are highly educated and coming from around the world.

Why Is This Important?

Silicon Valley’s most important asset is its people. They drive the economy and shape the quality of life in the region. The region has benefited significantly from the entrepreneurial spirit of people drawn to Silicon Valley from around the country and around the world. In particular, immigrant entrepreneurs have contributed considerably to innovation and job creation in the region. A region that can draw talent from other parts of the country and other regions of the world vastly expands its potential for closer integration with other innovative regions and thereby bolsters its global competitiveness.

How Are We Doing?

With a net increase of 38,097 people, Silicon Valley’s population increased by 1.5% in 2007. Since 2005, the region has had three consecutive years of expanding growth and has surpassed the State’s growth rate for the second time in over a decade. Driving this increase is the change in net migration, which almost doubled from 8,404 to 15,163 in 2007—the second year with positive net migration since 2000. Net migration includes all legal foreign immigrants, residents who left the state to live abroad, and the balance of hundreds of thousands of people moving to and from the region from within the United States.

The recent shift in net migration is due primarily to substantially lower domestic out-migration; about 75% fewer people left Silicon Valley in 2007 than 2006. This pattern is much different than the net total of 30,000 to 40,000 people who left annually between 2001 and 2003. Even during the economic downturn, net foreign immigration has remained a constant source of new population and increased by 11% in 2007. Natural population change due to births and deaths has also remained stable.

Silicon Valley has cultural ties around the world. Thirty-five percent of the region’s residents were born in another country and they are more than twice as likely than U.S. residents to speak a language other than English. By 2006, almost half of the population over 5 years of age in these Counties (48%) speaks a language other than English at home—up from 45% in 2002. Moreover, this measure of language diversity has been growing at a faster rate in Silicon Valley than in California or the nation as a whole. Among those who speak a language other than English at home, the largest proportion speak an Asian or Pacific Islander language (49%), just ahead of the share of Spanish speakers (40%).

An indication of the Silicon Valley’s ability to attract and grow highly-educated talent is its educational attainment level. More than four in ten residents over age 25 (44%) have at least a four-year degree, compared to 27% nationally. And two-thirds (68%) has had at least some college (including associate degrees and professional certifications). Roughly one-third (32%) has no more than a high school education, compared to 46% of the U.S. population.

The area’s universities are an important magnet for and source of highly-skilled talent. The number of science and engineering (S&E) degrees conferred by universities in or near Silicon Valley increased 25% between 1995 and 2005. Over this period, the proportion of S&E degrees received by foreign students rose from 13% to 17% - much higher than the State as a whole or the nation. In absolute numbers, S&E degrees conferred to foreign students in the region rose by 3% in the most recent year.

Components of Population Change
Santa Clara and San Mateo Counties

- Natural Change
- Net Migration
- Net Change

* Provisional population estimates for 2007
Source: California Department of Finance
Analysis: CEI

<table>
<thead>
<tr>
<th>Year</th>
<th>Silicon Valley</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2,516,532</td>
<td>37,332,976</td>
</tr>
<tr>
<td>2007</td>
<td>2,554,629</td>
<td>37,771,431</td>
</tr>
<tr>
<td>% Change</td>
<td>+1.5%</td>
<td>+1.2%</td>
</tr>
</tbody>
</table>

Net Migration Flows
Foreign and Domestic Migration
Santa Clara and San Mateo Counties

- Net Foreign Immigration
- Net Domestic Migration
- Net Migration

* Provisional population estimates for 2007
Source: California Department of Finance
Analysis: CEI
Talent Flows and Diversity

Educational Attainment

<table>
<thead>
<tr>
<th></th>
<th>United States</th>
<th>Silicon Valley</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>10%</td>
<td>18%</td>
</tr>
<tr>
<td>90%</td>
<td>17%</td>
<td>26%</td>
</tr>
<tr>
<td>80%</td>
<td>27%</td>
<td>24%</td>
</tr>
<tr>
<td>70%</td>
<td>30%</td>
<td>19%</td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Some College includes: Less than 1 year of college; Some college, 1 or more years, no degree; Associates degree; Professional certification

Source: U.S. Census Bureau, American Community Survey
Analysis: CEI

Silicon Valley vs United States

<table>
<thead>
<tr>
<th></th>
<th>Silicon Valley</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some college or more</td>
<td>68%</td>
<td>54%</td>
</tr>
<tr>
<td>Bachelor’s Degree or higher</td>
<td>44%</td>
<td>27%</td>
</tr>
</tbody>
</table>

Foreign Students

<table>
<thead>
<tr>
<th>Year</th>
<th>S&E Degrees Conferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>11,449</td>
</tr>
<tr>
<td>2005</td>
<td>+3%</td>
</tr>
<tr>
<td>2006</td>
<td>11,814</td>
</tr>
</tbody>
</table>

Note: Data for 1999 not available
Source: National Center for Education Statistics, IPEDS
Analysis: CEI
Population Share that Speaks Language Other than Exclusively English at Home
Santa Clara & San Mateo Counties, California, U.S.

Speaks language other than English:
- Silicon Valley: 48%
- United States: 20%
- Spanish: 40%
- Asian: 49%
- European (other than Spanish): 7%

Source: U.S. Census Bureau, American Community Survey Analysis: CES

Language Spoken at Home for Population 5 Years and Older
Santa Clara and San Mateo Counties – 2006

- Spanish: 40%
- Vietnamese: 15%
- Tagalog: 10%
- Chinese: 9%
- Hindi and Other Indian: 6%
- Vietnamese: 5%
- Other Pacific Island: 2%
- Other: 2%

Source: U.S. Census Bureau, American Community Survey Analysis: CES

* Other European includes: Italian, Scandinavian, Greek, Serbo-Croatian, Other Slavic, Armenian, Other Indo-European
Silicon Valley continues to be a strong player in innovation. Venture capital investment and patent activity are growing in clean technology. Broadband speed and penetration lag other global innovative regions.

Value Added

Value Added per Employee
Santa Clara & San Mateo Counties and U.S.

Rate of Increase

2006-2007
Silicon Valley 2.0%
U.S. 1.4%

Global Patent Collaboration

Patents with Silicon Valley & Foreign Co-Inventors

Silicon Valley’s inventors are collaborating with foreign inventors at an increased rate
Share of patents with SV inventors that also have foreign co-inventors
5% 2005
8% 2006
Silicon Valley continues to increase its share of all CA and U.S. patents by 46.8% of CA patents and 11.6% of U.S. patents.

Silicon Valley cities make up more than half of the top 20 U.S. cities in patents registered.

In 2006, Silicon Valley accounted for 23% of all green technology patents in California.
Innovation

Venture Capital Dollars

Total Venture Capital Financing in Silicon Valley Firms

Silicon Valley Cities

Investment is 10.8% higher compared to Q3 in 2006

Silicon Valley VC investment:
2006 Q1-Q3: $5.3 billion
2007 Q1-Q3: $5.9 billion

Share of US Venture Capital

Silicon Valley Share of US Venture Capital Investments

Share of US VC coming to SV
2000: 21%
2006: 29%
2007*: 27%

Venture Capital by Industry

Venture Capital Investment in Silicon Valley by Industry

Top Growers
- Industrial/Energy
- Medical Devices & Equipment

Rebounding
- Telecom
- Networking & Equipment

Highlighted fields indicate longer term areas of growth

Medical Devices & Equipment replaced Semiconductors as 2nd largest share of total VC investment in Silicon Valley

Source: PricewaterhouseCoopers/National Venture Capital Association
MoneyTree™ Report based on data from Thompson Financial Analysis CEI

* Current as of Q3 2007
Energy Generation makes up the bulk of cleantech investment in the Valley.

Cleantech VC Investment by Segment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>80%</td>
<td>60%</td>
<td>40%</td>
<td>20%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

2006: $125m
2007: $225m

Source: Cleantech Group, LLC Analysis: CBI

Venture Capital Investment in Clean Technology

Silicon Valley & Rest of California

- Silicon Valley: $125m
- Rest of California: $225m

Cleantech investment 2006-2007
- Silicon Valley: +94%
- Rest of California: +7%

Silicon Valley cleantech investment:
- 62% of CA
- 21% of U.S.

Source: Cleantech Group, LLC Analysis: CBI

SV Firms with Foreign Operations

Silicon Valley firms with affiliates abroad:
- Top Ten Countries and Industries, 2007

Silicon Valley manufacturing and software firms are the most likely to have affiliates in other countries.

Of the top ten countries with Silicon Valley affiliates, half are in Asia.

Source: United World Business Publications Analysis: CBI
With 51% of households subscribing to broadband, the Bay Area is well ahead of the nation as a whole with 39%. Globally, the Bay Area lags South Korea, Japan and many European countries in household penetration and speed of broadband. Broadband connectivity is defined as download speeds of at least 200 kbit/s by the U.S. Federal Communications Commission and of at least 256 kbit/s by the Organisation for Economic Co-Operation and Development (OECD).
Global Broadband Subscribers
Percentage of Households, 2006

- Bay Area**: 51%
- United States*: 39%
- Canada: 50%
- Iceland: 72%
- United Kingdom: 44%
- France: 30%
- Netherlands: 66%
- Germany: 34%
- Norway: 57%
- Denmark: 63%
- Sweden: 51%
- Finland: 53%
- South Korea: 67%
- Japan**: 94%

Note: Broadband download speeds equal to, or faster than, 256 kbit/sec. (Source: U.S. FCC)

* 2005 Data ** 2006 Data *** Broadband download speeds equal to, or faster than, 200 kbit/sec. (Source: U.S. FCC)

Sources: OECD, ICT database and Eurostat, Community Survey on ICT usage in households and by individuals, April 2007.

San Francisco Public Policy Institute of California. Survey results Forrester Research
Employment growth over last year remained positive but slowed in 2007. Nonetheless, Silicon Valley’s employment growth outpaced that of the State and U.S. Structurally, employment shares are shifting to software and creative & innovation services. Establishments and employment in green technology and services are growing in the region.

Why Is This Important?

Tracking job gains and losses is a basic measure of economic health. Shifting employment across industries suggests structural changes in Silicon Valley’s economic composition. Over the course of the business cycle, employment shifts across industries and permanent shifts as entire industries grow or shrink expose structural changes in Silicon Valley’s economic composition. Recent attention has been focused on the growing activities in the “green economy.” While establishment-based employment provides the broader picture of the region’s economy, observing the employment and unemployment rates of the population residing in the Valley reveals the status of the immediate Silicon Valley-base workforce.

How Are We Doing?

For the third year in a row, the Valley experienced job gains - growing by 1.7% over the previous year (2006 Q2). For the first time, employment data reported in the 2008 Index reflect an expanded geographic definition of Silicon Valley including all of San Mateo County. Final estimates for the first quarter of 2007 over 2006 show a gain of 28,000 jobs and regional growth of 2.1% which is well ahead of 0.9% growth in the rest of the State and 1.4% in the U.S.

Structural change is evident in the shift in employment distribution across the region’s core cluster industries. From 1996 to 2006, the share of core cluster employment in semiconductors dropped 8% and 5% in hardware as well as electronic components. Employment shares in software and services in design and innovation support have expanded the most increasing 13% and 4% respectively. Employment shares in biomedical grew by 1%.

Growth in “green establishments,” businesses producing products and offering services that directly or indirectly reduce environmental degradation and specifically the generation of greenhouse gas emissions, is taking place throughout the State. The analysis of “green establishments” is based on the definition of “cleantech” developed by the Cleantech Network encompassing new technology and processes across a range of industries that enhance efficiency, reduce or eliminate negative ecological impact, and improve the productive and responsible use of the natural resources. See for specific industry segments. Although establishment growth is similar, since 2000 Silicon Valley’s number of green jobs has increased by 41% compared to 17% in the rest of the State. This suggests that the region’s green establishments are larger. Of the Valley’s green establishments, 43% are concentrated in energy generation (e.g. solar and wind product manufacturing and installation services) and 39% in energy efficiency (e.g. manufacturing and sales of products and materials that conserve energy).

2 For the first time, employment data reported in the 2008 Index reflect an expanded geographic definition of Silicon Valley including all of San Mateo County.
3 The analysis of “green establishments” is based on the definition of “cleantech” developed by the Cleantech Network encompassing new technology and processes across a range of industries that enhance efficiency, reduce or eliminate negative ecological impact, and improve the productive and responsible use of the natural resources. See www.cleantechnetwork.com for specific industry segments.
Shift in Cluster Employment

Silicon Valley’s Driving Cluster Industries

Employment Distribution

- **Q2 1996**
 - Electronic Components: 12%
 - Biomedical: 7%
 - Computer and Computer Hardware: 20%
 - Semiconductors: 24%
 - Creative and Innovation Services: 20%
 - Software: 17%

- **Q2 2006**
 - Electronic Components: 7%
 - Biomedical: 15%
 - Computer and Computer Hardware: 24%
 - Semiconductors: 24%
 - Creative and Innovation Services: 30%
 - Software: 12%

Source: California Employment Development Department Analysis CEI

GreenTech Firms & Employment

Santa Clara & San Mateo Counties

- Silicon Valley Establishments vs. Silicon Valley Employment

Source: National Establishment Time Series Database Analysis: CEI

SV Green Establishments

- 43% Energy Generation
- 39% Energy Efficiency

Green Establishments & Employment

Santa Clara & San Mateo Counties

Growth 2000-2006

- **Firms**
 - Silicon Valley: 33%
 - Rest of CA: 31%

- **Employment**
 - Silicon Valley: 41%
 - Rest of CA: 17%

Source: National Establishment Time Series Database Analysis: CEI
Income

While incomes appear to be rising in Silicon Valley, the cost of living in the region is also on the rise.

Why Is This Important?

Earnings growth is as important a measure of Silicon Valley’s economic vitality as job growth. A variety of income measures presented together provides an indication of regional prosperity and the distribution of prosperity.

Real per capita income rises when a region generates wealth faster that its population increases. Household income distribution tells us more about concentrations of income, and if economic gains are reaching all members of the region. The median household income is the income value at the middle of all income values.

How Are We Doing?

Real per capita income in Silicon Valley is 57% higher than the U.S. average. The cost of living—including housing—is 47% higher than that of the nation. Since 2003, the region’s real per capita income has grown faster than that of the United States as a whole—rising 12% compared to 10% for the nation. Silicon Valley’s real per capita income was only higher in the peak year of 2000.

Median household income increased modestly in Silicon Valley in 2006. Between 2005 and 2006, real median household income rose 2% and now stands at $82,486. In contrast, U.S. household income has remained stagnant since 2000. While median household income has been growing in the region, living expenses such as housing, food, and transportation are high. According to the affordability benchmark developed by the California Budget Project, a two-worker family in the Bay Area1 needs to earn $77,076 to cover the basic family budget. This means that in order for a two-worker family to reach the threshold of middle class living, at least one worker must have a mid-wage level job.

Overall, Silicon Valley has a much higher proportion of households earning $100,000 or more (39%) compared to either California (25%) or the nation as a whole (18%). The region also has a much lower share of households making less than $35,000 (21%) than the State (31%) or the nation (36%). The distribution of household income is trending upwards, as it is both California and the United States as a whole. The percentage of households earning less than $35,000 in Silicon Valley has been declining since 2004, while the share of households making $100,000 or more has been increasing since 2003. The proportion of households earning between $35,000 and $100,000 has held relatively steady during this time.

1 The California Budget Project defines the Bay Area as Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties.
The cost of living in Silicon Valley, including housing, is 47% higher than the nation.
Prefering for Economic Success

High school graduation rates dropped for all racial and ethnic groups except Latinos. Across all groups, fewer students are achieving UC/CSU requirements.

Why Is This Important?

The future success of the region’s young people in a knowledge-based economy will be determined largely by how well elementary and secondary education in Silicon Valley prepares its students for higher levels of education. In 2004, school funding in Santa Clara County was 88% of the national average. Although higher for California (93%), Santa Clara County has been bridging the gap with the nation at a faster pace than the State.

How well the region is preparing its youth for postsecondary education can be observed in graduation rates and the share of graduates completing courses required for entrance to the University of California (UC) or California State University (CSU). Likewise, high school drop-outs are significantly more likely to be unemployed and earn less when they are employed than high school graduates.

How Are We Doing?

Preliminary figures for 2006-07 indicate that Silicon Valley’s high school graduation rate dropped 3% to 84% over 2005-06. Every district and the County of Santa Clara experienced an overall decline in the number of graduates. The share of graduates who met UC/CSU entrance requirements dropped slightly.

The distribution of graduates meeting UC/CSU requirements by race/ethnicity reveals that some groups are less prepared to enter college upon graduation. Only 23% of Latino and 22% of African American graduates met UC/CSU requirements compared to 62% of Asians and 52% of Whites.

Overall, drop-out rates of 13% were similar to the previous year. Although Latino students are most likely of all groups to leave school before graduating, drop-out rates for this group are slowing.
Graduates with UC/CSU Required Courses

Share of Graduates Who Meet UC/CSU Requirements by Ethnicity
Silicon Valley High Schools, 2006-2007

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian</td>
<td>6.2%</td>
</tr>
<tr>
<td>White</td>
<td>52%</td>
</tr>
<tr>
<td>Filipino</td>
<td>38%</td>
</tr>
<tr>
<td>American Indian</td>
<td>38%</td>
</tr>
<tr>
<td>African American</td>
<td>22%</td>
</tr>
<tr>
<td>Pacific Islander</td>
<td>22%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>23%</td>
</tr>
</tbody>
</table>

Source: California Department of Education, Silicon Valley School Districts

High School Dropout Rates

Silicon Valley High Schools

<table>
<thead>
<tr>
<th>Year</th>
<th>Dropout Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-99</td>
<td>8%</td>
</tr>
<tr>
<td>1999-00</td>
<td>7%</td>
</tr>
<tr>
<td>2000-01</td>
<td>7%</td>
</tr>
<tr>
<td>2001-02</td>
<td>5%</td>
</tr>
<tr>
<td>2002-03</td>
<td>7%</td>
</tr>
<tr>
<td>2003-04</td>
<td>8%</td>
</tr>
<tr>
<td>2004-05</td>
<td>13%</td>
</tr>
<tr>
<td>2005-06</td>
<td>12%</td>
</tr>
<tr>
<td>2006-07</td>
<td>13%</td>
</tr>
</tbody>
</table>

*Preliminary Data
Source: California Department of Education, Silicon Valley School Districts
Early Education

While kindergarten readiness is modestly improving, third-grade reading scores dropped slightly, and differences by ethnicity persist.

Why Is This Important?

When children are subject to positive early childhood experiences that enhance their physical, social, emotional and academic wellbeing and skills, they enter school ready to learn and are more likely to perform better in later school years. Preschool attendance is linked to higher kindergarten readiness. How prepared children are when they enter kindergarten relative to teacher expectations is an indication of children’s readiness for school and future school success.

Children’s school success is in part a function of increasing literacy. Research shows that children who read well in the early grades are far more successful in later years; and those who fall behind often stay behind when it comes to academic achievement (Snow, Burns and Griffin, 1998). Success and confidence in reading are critical to long-term success in school.

How Are We Doing?

Silicon Valley’s very young children typically experience a variety of care settings before entering kindergarten, and over half are cared for by a stay-at-home parent. The percentage of in-coming kindergartners with some preschool experienced increased by 7% in 2006 over 2004.

Although fewer than half of Santa Clara County’s preschoolers were considered prepared for kindergarten in terms of their overall physical, social and academic readiness, the proportion of children deemed “significantly below” the desired levels of proficiency for overall readiness dropped from 22% to 16% of all kindergartners between 2005 and 2006 (data was not collected for San Mateo County during this period).

Children were most prepared in the areas of self-care and motor skills and least prepared in kindergarten academics and self-regulation. Kindergarten teachers identify self-regulation skills (e.g., pays attention, controls impulses, plays cooperatively) as the skills children need most when they enter school. In 2006, more than one in five children fell significantly below teacher expectations in terms of self-regulation skills. Kindergarten Academics reflects a child’s ability to engage with books and recognize letters among other skills. The share lacking kindergarten academics also dropped from 20% to 11% between 2005 and 2006.

The reading proficiency of Silicon Valley third graders decreased slightly in 2007—after experiencing increases the prior two years. In 2007, the share of students scoring above the national median decreased from 49% to 48%. The percentage in the lowest-scoring quartile rose from 26% to 28% of third graders.

Large disparities exist by race and ethnicity. For example, forty-six percent of Latino third-graders scored in the lowest quartile—and eight in ten (78%) scored below the national median for reading proficiency. In contrast, seven in ten (70%) of white students scored above the national median—with 39% scoring in the top quartile.

1 Santa Clara County School Readiness Assessment 2006-2007
Third Grade Reading Ability

Share of Third Graders Scoring at National Benchmarks on CAT/6 Reading Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Top Quartile</th>
<th>Between Median & Top Quartile</th>
<th>Between Median & Bottom Quartile</th>
<th>Bottom Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>21%</td>
<td>26%</td>
<td>29%</td>
<td>28%</td>
</tr>
<tr>
<td>2004</td>
<td>21%</td>
<td>26%</td>
<td>29%</td>
<td>28%</td>
</tr>
<tr>
<td>2005</td>
<td>22%</td>
<td>25%</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>2006</td>
<td>22%</td>
<td>25%</td>
<td>25%</td>
<td>26%</td>
</tr>
<tr>
<td>2007</td>
<td>23%</td>
<td>25%</td>
<td>25%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Source: California Department of Education Analysis CEI

For 2007:

-1% Top Quartile

+2% Bottom Quartile

Reading Proficiency by Race/Ethnicity

Scoring at National Benchmarks on CAT/6 Reading Test

Santa Clara County, 2007

Cambodian, Samoan and Lao not included due to small number of observations. Source: California Department of Education Analysis CEI
Arts and Culture

Silicon Valley’s arts & culture organizations are growing in number but they continue to face increasing fiscal constraints. While revenues and expenses have dropped by double digits, contributions from private and public sources have dropped minimally.

Why Is This Important?

Art and culture are integral to Silicon Valley’s economic and civic future. Participation in arts and cultural activities spurs creativity and increases exposure to diverse people, ideas and perspectives. Creative expression is essential for an economy based on innovation. How well the region’s arts nonprofits are flourishing in numbers and financially gives some indication for the levels of participation and community support of arts activities.

How Are We Doing?

The region’s arts & cultural nonprofits continue to grow in number. Since 2000, the number of arts nonprofits expanded by 37% in the Valley which is at a faster rate than in the rest of the State (28%). Typically, 50% of revenues come from private and public contributions, and peaked at 59% in 2001 at the height of the economic expansion. In comparison with arts organizations in the State as a whole, the Valley’s arts groups typically generate more of their resources from earned income. Although total median revenue for Silicon Valley’s arts & cultural nonprofits has declined by 13% since 1995, median contributions have dropped only by 3%.

Growth in Arts

Growth 2000-2005:
+37% Silicon Valley
+28% Rest of CA

Source: National Center for Charitable Statistics, Core Trend File Analysis: CII
Percentage of Revenue From Contributions:
49% Silicon Valley
58% California

Investing in the Arts
Arts & Cultural Nonprofit Organizations
Median Revenue, Expenses and Contributions
Silicon Valley

-13% Revenues
-17% Expenses
-03% Contributions

*Includes contributions made by individuals and groups as well as government grants
Source: National Center for Charitable Statistics, Core Trend File
Analysis: CEI
Core indicators for the health of the region’s residents suggest quality of health is not improving. While access to health insurance has improved for some population groups, overall access is narrowing.

Why Is This Important?

Poor health outcomes generally correlate with poverty and poor access to preventative health care and education. Early and continued access to quality, affordable health care is important to ensure that Silicon Valley’s residents are healthy and prosperous. For instance, timely childhood immunizations promote long-term health, save lives, prevent significant disability and reduce medical costs. Health care is expensive, and individuals with health insurance are more likely to seek routine medical care and to take advantage of preventative health-screening services.

Over the past two decades, obesity has risen dramatically in the United States and its occurrence is not just limited to adults—the percentage of young people who are overweight has more than tripled since 1980. Being overweight or obese increases the risk of many diseases and health conditions, including Type 2 diabetes, hypertension, coronary heart disease, stroke and some type of cancers. These conditions have a significant economic impact on the nation’s health care system as well as the overall economy due to declines in productivity.

How Are We Doing?

The rate of immunization for children ages 19-35 months has not improved over that last decade in Santa Clara County or the state as a whole. Progress is not being made toward the Healthy People 2010 Goal of 90% of the U.S. Department of Health and Human Services.

Access to health insurance varies widely within the Silicon Valley population. Remaining constant since 2001, 96% of residents primarily speaking English at home have health insurance. Chinese speakers made the most positive gains in coverage rates from 74% in 2001 to 93% four years later. Coverage rates for Spanish and Vietnamese speakers have declined since 2001, dropping to roughly seven in ten residents by 2005. English and Chinese speakers are also more likely to have employer-based coverage.

Asthma continues to affect more than one in ten Silicon Valley residents. And the proportion of the population in Santa Clara and San Mateo Counties diagnosed with asthma has grown since 2001.

Since 1999, the proportion of youth who fall into the “Health Fitness Zone” has improved primarily for younger students. The percentage of Fifth Graders who meet the fitness zone criteria increased 11% since 1999. This measure is based on national standards developed by the Cooper Institute for Aerobics Research to represent a level of fitness that offers some degree of protection against diseases that result from sedentary living.

6 The appearance of a drop in immunization rates in 2006 is described by the U.S. Center for Disease Control as not statistically significant.
Access to Health Insurance

Health Insurance Coverage by Language Spoken at Home
Santa Clara and San Mateo Counties

Coverage Rates
2001–2005
Spanish -20%
Vietnamese -8%
Chinese +19%

Source: UCLA Center for Health Policy Research, California Health Interview Survey
Analysis: CBI
*For residents under 65 years old

Overweight or Obese* Adolescents and Adults
Silicon Valley and California

Asthma Cases
Share of Population with Asthma*
Santa Clara and San Mateo Counties

Asthma diagnoses 2003-2005:
-1%

*All adults and children 1 year of age or older who have ever been diagnosed with asthma.
Source: UCLA Center for Health Policy Research, California Health Interview Survey
Analysis: CBI

*For adults, “Overweight or obese” includes the respondents who have a BMI of 25 or greater. For adolescents, “Overweight or obese” includes the respondents who have a BMI in the highest 95th percentile with respect to their age and gender.
Source: UCLA Center for Health Policy Research, California Health Interview Survey
Analysis: CBI
Safety

Juvenile offenses as well as substantiated cases of child abuse are on the rise each at a faster rate than in the State as a whole. While youth drug offenses are up, county treatment facilities are providing services to larger numbers of youth and adult clients.

Why Is This Important?

The level of crime is a significant factor affecting the quality of life in a community. Incidence of crime not only poses an economic burden, but also erodes our sense of community by creating fear, frustration and instability. Occurrence of child abuse is extremely damaging to the child and increases the likelihood of drug abuse, poor education performance and of criminality later in life. Research has also linked adverse childhood experiences, such as child abuse/neglect, to poor health outcomes including heart disease, depression, and liver and sexually transmitted diseases. Safety for the community starts with safety for children in their homes.

How Are We Doing?

The rate of substantiated cases of child abuse in Silicon Valley rose again in 2006, while the rate for California continued to decline slightly. California’s rate is much higher than Silicon Valley’s, but this gap has been steadily narrowing since 2002. In fact, the rate of child abuse in Silicon Valley has increased every year since 2003.

The rate of juvenile felony offenses rose in Silicon Valley for the fourth consecutive year and remains on par with California. Prior to 2005, Silicon Valley’s rate of juvenile felony offenses was consistently below that of California every year since 1996—the first year this measure was included in the Index of Silicon Valley. A subset of overall juvenile felony offenses, juvenile felony drug offenses have now increased two years in a row (2006 and 2007) after four consecutive years of decline.

In contrast, the region’s rate of adult felony offenses continues to be well below that of California—and decreased in 2006 for the first time since 2003. The most recent data on adult felony drug offenses (FY2007) also indicate a drop for the first time since 2003.

Generally, there has been an increase in both adult and juveniles being served by county drug and alcohol rehabilitation programs relative to 2000. This can be explained in part by the passage of Proposition 36 in 2000, which is a law that diverts non-violent defendants, probationers and parolees charged with simple drug possession or drug use offenses, from incarceration into substance abuse treatment programs. Treatment is paid for primarily through state funding and is provided in several formats, ranging from non-residential to residential to acute care services.

Substantiated Cases

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3,964</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>4,231</td>
<td>7%</td>
</tr>
</tbody>
</table>

Felony Offenses

Silicon Valley juvenile felony offenses per 100,000 increased 23% since 2002 compared to a 6% decline in California.
Drug Offenses & Services – Adult

Drug & Alcohol Rehabilitation Clients & Felony Drug Offenses
Santa Clara and San Mateo Counties

FY2006-FY2007

- Adult drug offenses
 - 6%
- Adult drug and rehabilitation clients
 - 6%

Note: Felony drug offenses data are based on calendar years 1999 through 2006.
Source: California Department of Justice; Santa Clara County Department of Alcohol & Drug Services; Alcohol & Drug Services Research Institute; San Mateo County Human Services Agency; Business Systems Group.

Drug Offenses & Services – Juvenile

Drug & Alcohol Rehabilitation Clients & Felony Drug Offenses
Santa Clara and San Mateo Counties

FY2006-FY2007

- Juvenile drug offenses
 - 12%
- Juvenile drug and rehabilitation clients
 - 8%

Note: Felony drug offenses data are based on calendar years 1999 through 2006.
Source: California Department of Justice; Santa Clara County Department of Alcohol & Drug Services; Alcohol & Drug Services Research Institute; San Mateo County Human Services Agency; Business Systems Group.
Environment

Progress is underway in improving the region’s environmental quality. Residents are beginning to change their habits in how they go to work, what kinds of vehicles they drive and how they generate their energy. While residents are conserving more water, they are consuming greater amounts of electricity.

Why Is This Important?

Environmental quality directly affects the health of all residents and the ecosystem in the Silicon Valley region, which is in turn affected by the choices that residents make about how to live—how we choose to access work, other people, goods and services; where we build our homes; how we use our natural resources; and how we enforce environmental guidelines.

Preserving open space protects natural habitats, provides recreational opportunities, focuses development, and maintains the visual appeal of our region. Protected lands include habitat and wildlife preserves, waterways, agricultural lands, flood control properties, and parks.

Water is one of the region’s most precious resources, serving a multitude of needs, including drinking, recreation, supporting aquatic life and habitat, and agricultural and industrial uses. Water is also a limited resource because water supply is subject to changes in climate and state and federal regulations. Sustainability in the long-run requires that households, workplaces and agricultural operations efficiently use and reuse water.

The modes of transportation we use to access work, other people, goods, and services, including the type of cars we drive, impact the quality of our air and the region’s transportation infrastructure. Motor vehicles are the major source of air pollution for the Bay Area. By utilizing alternative modes of transportation, such as public transit and walking, as well as choosing vehicles that are more fuel efficient or use alternative sources of fuel, residents can reduce their ecological footprint.

Shifting from carbon-based fuels to renewable energy sources and reducing consumption together have the potential for wide-reaching impact on our environmental quality in terms of local air quality and global climate change.

How Are We Doing?

Open space and the share that is accessible to the public continue to increase, due in part to concerted efforts by the Mid-Peninsula Regional Open Space District and the Land Trust of Santa Clara County. From 2002 to 2007, protected open space in Silicon Valley grew by 5% or 10,074 acres. Even more land is becoming accessible to the public: protected accessible lands increased by 13% or 17,462 acres in the past five years. The region has added protected open space and protected accessible lands at a much higher rate than urban/developed land, which grew just over 1% between 2002 and 2007.

With the exception of FY 2003-2004, total per capita water-use in Silicon Valley has declined by 6% since 2000. Almost doubling since 2000, 3.5% of total consumption is from recycled water. Years with significant precipitation result in lower water-use largely due to landscaping needs. However, the increase in recycled water-use suggests that conservation efforts could also be contributing to changing patterns in water-use.

Residential electricity consumption has risen in Silicon Valley. Since 2000 per capita residential consumption increased by 5.8% in Silicon Valley while in the rest of the State it increased by only 1.8%. Increased residential consumption in the State is related to the energy required to cool increasingly larger homes and run the growing number and size of household electronics.

The region is producing more renewable energy. As of 2007, with about 7% of the State’s population, Silicon Valley accounts for 13% of the renewable energy produced by solar and wind systems in California. Moreover, between 2006 and 2007, the region increased its amount of renewable energy (as measured by kilowatts added through approved state rebates) by 21%—faster than California’s 17% gain.

From 2002 to 2007

open space increased 5%
and accessible protected lands increased 13%

1 Although the data depicts a 0.7% drop in protected open space from 2006-2007, overall acreage has increased in the past year. There are some errors in the data that were not incorporated into GreenInfo Network’s database until this year including 6,000 acres in Don Edwards National Wildlife Refuge. Some have been acquired this year and are added to the overall protected acreage including Montalvo Hill in Santa Clara which is 1,020 acres, Tyler Ranch in the East Bay which is 1,400 acres and Roche Ranch in Sonoma County. 1,600 acres GreenInfo Network is scheduled to have a new release in early 2008.

Analysis: CEI
Renewable Energy

Growth in kWatts Produced by Solar & Wind Systems and Share of CA Total*

*As of September 30, 2007

Source: California Energy Commission

Analysis: CEI

Photovoltaic and Wind

Cumulative kW added through approved rebates

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Valley</td>
<td>14,213</td>
<td>17,167</td>
<td>21%</td>
</tr>
<tr>
<td>California</td>
<td>116,377</td>
<td>135,604</td>
<td>17%</td>
</tr>
</tbody>
</table>

Electricity Consumption

Residential Electricity Consumption per capita

Silicon Valley and the Rest of California

Source: California Energy Commission, California Department of Finance

Analysis: CEI

Gross per capita consumption fell by 6% between 2000 and 2006 while the share of total water consumption that is recycled increased 2.2%
Silicon Valley remains an automobile-dependent region, although this pattern may be slowly changing. Despite the fact that the total number of vehicles in Silicon Valley went up, total vehicle miles traveled has not increased since 2000. Some of this change is likely driven by higher gas prices in recent years, and some people have turned to alternatives. Transit ridership increased by 3.4% from 2006 to 2007. While most commuters still drive alone to work, in 2006 this figure reached its lowest level since 2002. By 2006, 25% of workers were employing some alternative to driving alone to work. The largest change in recent years has been in the share of commuters working from home. In 2006, roughly 53,000 residents worked from home—an increase of 46% since 2002 when about 36,400 Silicon Valley residents worked from home.

Although the region remains automobile-dependent, the fuel efficiency of vehicles is also gradually changing. The number of alternative fuel vehicles in Silicon Valley increased 57% from 2004 to 2005. By 2005, the share of operational vehicles in the region running on alternative fuels was 1.4%, up from 0.9% in 2004. The growth was due mainly to the increased use of hybrid vehicles: as of 2005, there were about 10,000 hybrid vehicles registered in Silicon Valley, or about 11% of the California total. In addition, the average fuel efficiency of passenger vehicles has been increasing every year since 2000—with a jump in the rate of increase in 2006. Overall, on a per capita basis, residents of Silicon Valley reduced their fuel consumption 9% between 2000 and 2006, while Californians as a whole maintained their consumption level.

Related to automobile use and fuel consumption, Silicon Valley has made significant improvements in ozone pollution, achieving a reduction of 75% in 2003 from 1998. In contrast, 2005 was the first year of progress for the State as a whole dropping by 10% from 1998 levels. From 2004 to 2005, the number of days exceeding state standards for ozone pollution dropped from 10 to 5 days.
3.4% increase in rides per capita from 2006 to 2007.

Means of Commute

Santa Clara and San Mateo Counties

SV Commuters 2005-2006

-1% driving alone
+1% public transit
+1% worked from home

*Means of transportation refers to the principal mode of travel or type of conveyance that the worker usually used to get from home to work during the reference week.

Source: U.S. Census Bureau, American Community Survey
Analysis: CEI
Alternative Fuel Vehicles

Silicon Valley, 2005

- Natural Gas: 4%
- Electric: 3%
- Hybrid: 36%
- All Alcohol: 57%

Hybrid vehicles in Silicon Valley make up 11% of all such vehicles in California.

Vehicle Efficiency

Vehicle Efficiency Average Gas Mileage of Passenger Car Vehicles

- Silicon Valley and California

Percent change in average miles per gallon 2000-2006:

- Silicon Valley: +0.6%
- California: +0.4%

Passenger car vehicles include light duty autos, light duty trucks, and medium duty vehicles.

Source: California Air Resources Board

Analysis: CBI

Includes hybrid and electric vehicles as well as vehicles running on all alcohol based and gaseous non-carbon fuels. Does not include diesel engine vehicles.

Source: California Department of Motor Vehicles

Analysis: CBI

The number of alternative fuel vehicles in Silicon Valley increased by 57% from 2004 to 2005.
Fuel Consumption

Per Capita Fuel Consumption*
Silicon Valley and the Rest of California

<table>
<thead>
<tr>
<th>Year</th>
<th>Silicon Valley</th>
<th>Rest of California</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>498.4</td>
<td>496.9</td>
</tr>
<tr>
<td>2006</td>
<td>454.7</td>
<td>496.7</td>
</tr>
</tbody>
</table>

*Note: Fuel Consumption consists of gasoline and diesel fuel usage on all public roads.
Source: California Department of Transportation
Analysis: CEI

Percent Change
Per Capita Fuel Consumption 2000-2006

- Silicon Valley: -9.00%
- Rest of California: -0.04%

Air Quality

Trends in Ozone Pollution Relative to 1998
Number of Days Exceeding State 8-Hour Standard
Silicon Valley and California

- Number of days above State 8-hour ozone standard
 - 1998: 19 days
 - 2005: 5 days

*Note: Silicon Valley includes data for San Mateo County and Santa Clara County.
Source: California Air Resources Board, 2007 Air Quality Data DVD
Analysis: CEI
Land Use

The percentage of development near transit is growing. Non-residential development approved near transit surpassed approval elsewhere by a factor of five.

Why Is This Important?

By directing growth to already developed areas, local jurisdictions can reinvest in existing neighborhoods, use transportation systems more efficiently, and preserve the character of adjacent rural communities. Focusing new commercial and residential developments near rail stations and major bus corridors reinforces the creation of compact, walkable, mixed-use communities linked by transit. This helps to reduce traffic congestion on freeways and preserve open space near urbanized areas. By creating mixed-use communities, Silicon Valley gives workers alternatives to driving alone and increases access to jobs.

How Are We Doing?

The average density of newly approved development remained high dropping slightly from last year’s record to 21 units per acre, over three times the density of approved development in 1998, the first year the Joint Venture Land Use Survey was conducted. The share of newly approved housing that will be near transit increased for the fourth year in a row jumping to 55% in 2007. This share is 9 percentage points lower than the peak in 2001, but 26 percentage points higher than the share approved in 1998. In 2007, approved non-residential net development near transit doubled over the prior year and exceed other development by roughly five times.

Residential Density

Average Units Per Acre of Newly Approved Residential Development

<table>
<thead>
<tr>
<th>Year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Source: City Planning and Housing Department of Silicon Valley
Analysis: CEI

Density of newly approved housing dropped 7% from 2006 to 2007
55% of housing approved will be near transit

Share of housing that will be near transit increased 15% from 2006 to 2007

485,588 sq. feet of non-residential development that is far from transit

2,353,266 sq. feet of non-residential space near transit
Although ten percent of new housing in 2007 are affordable units, the cost of housing in the region is rising and foreclosures are skyrocketing.

Why Is This Important?

The affordability of housing affects a region's ability to maintain a viable economy and high quality of life. Lack of affordable housing in a region encourages longer commutes, which diminish productivity, curtail family time and increase traffic congestion. Lack of affordable housing also restricts the ability of crucial service providers—such as teachers, registered nurses and police officers—to live in the communities in which they work.

How Are We Doing?

The 571 new affordable units approved for construction in 2007 was 27% lower than in 2006, and the lowest number since the beginning of the survey in 1998. The share of new residential units that are affordable represent 10% of all new units dropping slightly from 11% in 2006.

Apartment rental rates rose 7% from 2006 to 2007—faster than the 5% recorded between 2005 and 2006. 2007 marked the second straight year of rising rental rates after several years of decline. Factors that could be continuing to drive the increase in average rents include the region's high housing prices combined with the slowdown in home appreciation that may be deterring renters from pursuing homeownership, as well increases in job growth and a dwindling supply of apartments. Rents increased more than twice as fast as median household income—which grew 2% between 2005 and 2006.

Home affordability has continued to decline in Silicon Valley. In just four years, the percentage of potential first time home buyers that can afford to purchase the median-priced home has dropped by half—from 44% in 2003 to 22% in 2007. Other California regions and the state as a whole have also experienced substantial drops in affordability. In fact, Los Angeles has become less affordable than Silicon Valley during this period.

The share of the total home price that is paid as the down-payment has been on the rise since the mid 1990s, and in 2007 jumped in Silicon Valley and dropped in the State as a whole. In 2007, the typical down-payment for a home purchase was 26% of total price, up 1.4% from 2006.

Residential foreclosure activity in Silicon Valley, measured by the annual percentage increase in the number of residential foreclosure sales, continued to climb. Over the 2006-2007 period, the rate of growth in foreclosures has skyrocketed—increasing 317% in California and 225% in Silicon Valley. The number of foreclosure sales has increased from 378 to 1,229 between 2006 and 2007. Foreclosures occur when homeowners cannot meet their mortgage payments. Thus, an increase in foreclosures is an indication of financial stress among households due to any variety of factors, including job loss, income decline, and adjustments of variable rate mortgages.

Building Affordable Housing

<table>
<thead>
<tr>
<th>Total New Housing Units Approved, Including New Affordable Housing Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Valley</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>18,000</td>
</tr>
</tbody>
</table>

Share of new housing that is affordable

- 2006: 11%
- 2007: 10%

Rental Affordability

<table>
<thead>
<tr>
<th>Apartment Rental Rates at Turnover Compared to Median Household Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Clara and San Mateo Counties</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>$1700</td>
</tr>
</tbody>
</table>

Rental rates rose 7% from 2006 to 2007
Home Affordability

Percentage of Potential First-Time Homebuyers That Can Afford to Purchase a Median-Priced Home
Silicon Valley & Other California Regions

Percentage of first-time homebuyers that can afford the median priced home in 2007:
- **22%** - Silicon Valley
- **24%** - California

Residential Foreclosure Activity

Annual Number of Foreclosure Sales

Number of Foreclosure Sales

<table>
<thead>
<tr>
<th>Year</th>
<th>Silicon Valley</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>378</td>
<td>12,699</td>
</tr>
<tr>
<td>2007</td>
<td>1,229</td>
<td>52,916</td>
</tr>
<tr>
<td>Increase</td>
<td>+225%</td>
<td>+317%</td>
</tr>
</tbody>
</table>

Down Payment Share

Trends in Downpayment as Share of Total Price of Home

<table>
<thead>
<tr>
<th>Year</th>
<th>Silicon Valley</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>26%</td>
<td>22%</td>
</tr>
</tbody>
</table>

* Note: 2007 data is through November
Source: DataQuick Information Systems
Analysis: CEI

Environment
- Land Use
- Housing
- Commercial Space

GOVERNANCE 46 | 49

Special Analysis continued...
Commercial Space

Demand for commercial space continues as vacancy rates drop and rents rise.

Why Is This Important?

This indicator tracks the supply of commercial space, rates of commercial vacancy, and cost, which are leading indicators of regional economic activity. In addition to office space, commercial space includes R&D, industrial, and warehouse space. The change in the supply of commercial space shows the impact of absorption and new construction added. A negative change in the supply of commercial space shows a tightening in the commercial real estate market. The vacancy rate measures the amount of space that is not occupied. Increases in vacancy, as well as declines in rents, reflect slowing demand relative to supply.

How Are We Doing?

Silicon Valley’s demand for commercial real estate market continues. The rate at which commercial space is being absorbed continues to outstrip new construction added for the third year in a row although slowing slightly. The overall annual rate of commercial vacancy declined for the fourth year in a row, but remains well above the very-low vacancy rate experienced during the economic peak in 2000. In 2007, vacancy rates varied across all types of commercial space—from R&D (11.5%) and office (8.3%) to industrial (4.4%) and warehouse (3.4%). In all cases, while vacancies rates have fallen in recent years, in 2007 the rate of decline slowed slightly. Rental rates were up again in 2007—the first time commercial rents have increased two straight years in all categories—office, R&D, industrial, and warehouse sectors—in a decade. In fact, in 2007, office and R&D sectors experienced their biggest increase in average asking rent since 2000.
Change in Rental Rates

2006-2007

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>14%</td>
</tr>
<tr>
<td>R&D</td>
<td>33%</td>
</tr>
<tr>
<td>Industrial</td>
<td>10%</td>
</tr>
<tr>
<td>Warehouse</td>
<td>18%</td>
</tr>
</tbody>
</table>

* as of October 2007
Source: Colliers International Analysis CEI

Commercial Rents

Annual Average Asking Rent
Santa Clara County

Commercial Vacancy

Annual Rate of Commercial Vacancy
Santa Clara County

The vacancy rate for commercial space declined 1.3% but remains 6.5 times the rate than in 2000

* as of October 2007
Source: Colliers International Analysis CEI
Civic Engagement

Silicon Valley voters exhibit increasing independence and the community continues to invest in its charities and foundations.

Why Is This Important?

An engaged citizenry shares in the responsibility to advance the common good, is committed to place and has a level of trust in community institutions. Voter participation is an indicator of civic engagement and reflects community members’ commitment to a democratic system; confidence in political institutions and optimism about the ability of individuals to affect public decision making.

Civic institutions, such as the non-profit sector, are important threads in a community’s civic fabric. They provide a safety-net for the community and inspire a spirit of giving and volunteering to tackle complex challenges facing a region. Measuring their growth over time gives an indication of a community’s willingness to invest in its civic institutions.

How Are We Doing?

Especially since the downturn there has been strong growth in Silicon Valley’s nonprofit sector. Between 2000 and 2005, the number of public charities grew by 27% and the number of private foundations grew by 29%. The primary activities of the region’s nonprofits are most concentrated in the areas of human services and education. Since 2000, the strongest growth in the number of nonprofits has been in the arts which grew by 37% over the five years. With increases of 31% each, international and religious organizations followed in growth in total numbers.

The percentage of residents who vote has increased since the beginning of the decade when presidential election years (2000, 2004) and gubernatorial election years (2002, 2006) are compared. However, the biggest change in the past decade is how residents participate in the political process. More voters now vote absentee than go to the polls—increasing from 24% to 68% of voters in Silicon Valley between 1998 and 2007. Since 1999, the percentage of voters in Silicon Valley declaring a party affiliation has continuously dropped from 84% to 77%—and remains lower than the state average.
Voters in Silicon Valley declared party affiliation 6% less than voters in the rest of California.
City revenues increased in fiscal year 2004-05 mainly due to property and other taxes. In 2005 Silicon Valley residents accounted for 15% of State revenues from personal income tax up from 13% in the previous year.

Why Is This Important?

Governance is defined as the process of decision-making and the process by which decisions are implemented. The ability of local government to govern effectively is influenced by many factors, including the availability and management of resources. To maintain service levels and respond to a changing environment, local government revenue must be reliable. Local revenues are affected by economic fluctuations and by state takings of locally generated revenue.

Property tax revenue is the most stable source of city government revenue, fluctuating much less over time than do other sources of revenue, such as sales, hotel occupancy and other taxes. Since property tax revenue represents less than a quarter of all revenue, other revenue streams are critical in determining the overall volatility of local government funding.

How Are We Doing?

Silicon Valley city revenues increased in 2004-2005 for the first time since the 2000-2001 time period. City revenues rose 9% from $2.3 billion in 2003-2004 to $2.5 billion in 2004-2005. In particular, property tax revenue experienced a major increase (37%), while sales tax revenue dropped 22%. In fact, property tax revenues are at their highest share—and sales taxes are close to their lowest share—of total city revenues since 1990.

Despite an increase in property tax revenue, Silicon Valley cities still derive most of their revenue from the most volatile sources: sales tax, other taxes and other sources of revenue. Property tax grew from 16% to 20% of total city revenue while sales tax dropped from 18% to 13%. Revenue shares from “Other taxes” grew from 20% to 24%. “Other revenue” sources dropped slightly and include intergovernmental transfers, special benefit assessments, fines, as well as permits and investments.

By virtue of its economic strength and comparatively high income levels, Silicon Valley typically makes a large contribution to state revenues. Through personal income taxes, the region, with about 7% of California’s population, accounted for 14.7% of state revenues in 2005—up from 13.3% in 2004. Silicon Valley has been responsible for as much as one-quarter (24.1%) of state revenues at the peak of the economic boom in 2000.
City Revenue Trends

Growth in City Revenues since 1990
Silicon Valley

Source: California State Controller’s Office
Analysis: CEI

Regional-State Interface

Silicon Valley’s Contribution to California State Revenues From Personal Income Tax

Source: California Franchise Tax Board, Economic and Statistical Research Bureau
Analysis: CEI
Replacement jobs: New opportunities
In addition to structural changes driving shifts in occupational demand, demographic and educational trends are leading toward a growing demand in a range of mid-wage occupations to fill positions being vacated by retirees. 2008 marks the first year in which baby boomers can retire and collect Social Security. The U.S. Department of Labor just projected that 25 million workers would retire in the next ten years and a larger number in the following decade. In California 3 million workers will retire by 2018, and the number of retirees in Silicon Valley will be close to 300,000.

Nationally there will be two job openings from replacements for every job opening created from growth. In these mid-wage foundation occupations the ratio is much higher as today’s workforce is relatively old. The latest California State projections show that for the San Francisco and San Jose metro areas, three job openings will come from replacements for every job opening created by growth and, again, the ratio is higher for mid-wage foundation occupations.

Some of these mid-wage job opportunities require a four-year college degree but many do not; however, most of these jobs do require additional training beyond high school—training that must come from community colleges, often in partnership with local companies or public agencies and from new training programs yet to be developed. These jobs provide opportunities for workers to improve their pay and career opportunities. And the Valley needs these workers; however, challenges exist not only in training students and existing workers for these jobs but in making potential trainees aware of these opportunities.

Replacement Jobs in the Public Sector
Although not clearly revealed in the occupational data, local governments and public services such as utilities and water and waste departments are expressing concern about filling the replacement needs in a wide range of technical fields and public administrative positions.

In 2001, roughly 45% of public employees were 45 years or older compared to 27% in the private sector. The 2003 Volcker Commission described the civil service “retirement tsunami” in which 60% of the federal workforce is expected to retire by the end of the decade. Although directed at federal government, the reported personnel crisis is also descriptive of the recruitment crisis besetting local governments.

The communities of Silicon Valley are witnessing this trend as well. For example, one-third of City employees in San Jose will be eligible for retirement by the end of the decade, and the City of Palo Alto has reported that it stands to lose a wave of top managers retiring by summer of 2008. In San Mateo County, the average age of County employees is 44.7, and currently 18% of County workers are over the age of 50 and eligible for retirement.

Dr. Frank Benest, out-going City Manager of Palo Alto, has identified four causes for the dearth of personnel qualified to fill the ranks of the waves of exiting public administrators: lack of succession planning, anti-government bias, value trends, and less time for traditional on-the-job mentoring.

The inability to fill critical technical and administrative positions will impact the delivery of services in our communities. Addressing this quickly approaching crisis will necessitate discussions about technical training, public service recruitment and personnel development.
California State occupational projections indicate that the bulk of job openings in the coming decade will be mid-wage jobs. Figure 3 represents the difference between projections for new jobs and for net replacements between 2004 and 2014 for Santa Clara County. At all earnings levels, job openings due to net replacements outpace openings from new positions. At the mid-wage level, projected replacement job openings are double new jobs. Replacement jobs at the lower wage level are projected to be almost triple new job openings. The bulk of such jobs are critical place-based occupations. Many of these jobs at the mid-wage level do not require university degrees.

Figure 3

<table>
<thead>
<tr>
<th>Occupation</th>
<th>2006 Median Wage ($2007)</th>
<th>Education & Training Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensed Practical and Licensed Vocational Nurses</td>
<td>$54,291</td>
<td>Post-Secondary Vocational Education</td>
</tr>
<tr>
<td>Medical Assistants</td>
<td>$35,359</td>
<td>Moderate-Term On-the-Job Training</td>
</tr>
<tr>
<td>Dental Assistants</td>
<td>$30,117</td>
<td>Moderate-Term On-the-Job Training</td>
</tr>
<tr>
<td>INFORMATION TECHNOLOGY SUPPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Support Specialists</td>
<td>$61,358</td>
<td>Associate Degree</td>
</tr>
<tr>
<td>Computer, Automated Teller, & Office Machine Repairers</td>
<td>$44,103</td>
<td>Post-Secondary Vocational Education</td>
</tr>
<tr>
<td>Semiconductor Processors</td>
<td>$42,512</td>
<td>Associate Degree</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricians</td>
<td>$68,426</td>
<td>Long-Term On-the-Job Training</td>
</tr>
<tr>
<td>Plumbers, Pipefitters, and Steamfitters</td>
<td>$59,045</td>
<td>Long-Term On-the-Job Training</td>
</tr>
<tr>
<td>Drywall and Ceiling Tile Installers</td>
<td>$54,036</td>
<td>Moderate-Term On-the-Job Training</td>
</tr>
<tr>
<td>Construction Laborers</td>
<td>$34,659</td>
<td>Moderate-Term On-the-Job Training</td>
</tr>
</tbody>
</table>

Occupations reporting the greatest net growth in employment are not necessarily the same occupations with the greatest projected need for replacing retiring workers (Figure 4). Occupations with net growth as well as growing replacement openings include Electricians and Computer Support Specialists. Surprisingly, many occupations that are decreasing in total numbers (as seen in Figure 2) are occupations identified as projected job replacement needs. For instance, although there has been a net decrease in the number of Office Clerks in the region, it is projected that between 2004 and 2014, over 400 positions for Office Clerks will open on an annual basis in Santa Clara County.
Ladders of Opportunity: Moving into Mid-Wage Occupations

Opportunities for earnings mobility exist in an environment of structural, technological and demographic change. While increased job churn produces uncertainty, there is evidence that in some industries, job switches promote earnings growth. Different occupations offer varying paths for mobility either through progressive training that can lead from one wage level to another or through switching from one industry to another. Shifts in occupational demand mean shifts in opportunity; however, gaining access to new opportunities typically is limited by real costs of time and money for training and by a lack of information about career paths and related training.

Mid-wage occupations can become mid-wage careers, as:

- People with growing experience move up in the same occupation in the same industry.
- People move laterally to different industries that pay more for their skills, knowledge, and abilities.
- People move from one mid-wage occupation to another, as they complete additional education and training, or find alternatives that are a close match to the existing skills, knowledge, and abilities.
- People move up from lower-wage to mid-wage occupations with additional education, training, or experience.

All these paths provide opportunity for upward mobility for residents of Silicon Valley. As occupations vary by levels and types of required training, the associated paths for earnings mobility also vary. The following section explores the training requirements and opportunities for movement up the earnings ladder.

Educational and training requirements of growing mid-wage occupations

For most mid-wage occupations, some additional preparation beyond high school is typically required. This could be college, or it could be specialized training. There are many opportunities in the top growing mid-wage occupations for people even without a four-year university degree. Figure 5 illustrates the educational distribution of people currently working in the detailed growing occupations. For example, fewer than 30% of people currently in the growing construction occupations have more than a high school diploma. Most growing occupations in health services are currently filled with people with some college and not necessarily a four-year degree. Occupations reflecting a wide distribution of educational attainment in Figure 5 such as Biological Technicians and Computer Support Specialists illustrate opportunities for earnings growth within the mid-wage level.

Figure 5

Educational Attainment by Mid-Wage Occupations

<table>
<thead>
<tr>
<th>HEALTH</th>
<th>Median Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dental Hygienists</td>
<td>$63,367</td>
</tr>
<tr>
<td>Medical & clinical laboratory technicians</td>
<td>$48,753</td>
</tr>
<tr>
<td>Licensed practical/nursing</td>
<td>$56,968</td>
</tr>
<tr>
<td>Biological technicians</td>
<td>$49,247</td>
</tr>
<tr>
<td>Pharmacy technicians</td>
<td>$40,659</td>
</tr>
<tr>
<td>Medical assistants</td>
<td>$36,529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IT SUPPORT</th>
<th>Median Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer support specialists</td>
<td>$59,972</td>
</tr>
<tr>
<td>Media and communication</td>
<td>$41,891</td>
</tr>
<tr>
<td>Computer automated teller &</td>
<td>$44,928</td>
</tr>
<tr>
<td>office machine repairs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>Median Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural and civil</td>
<td>$53,377</td>
</tr>
<tr>
<td>drafters</td>
<td></td>
</tr>
<tr>
<td>Construction and building</td>
<td>$72,740</td>
</tr>
<tr>
<td>inspectors</td>
<td></td>
</tr>
<tr>
<td>Electricians</td>
<td>$69,107</td>
</tr>
<tr>
<td>Plumbers, pipelayers,</td>
<td>$68,149</td>
</tr>
<tr>
<td>and steamfitters</td>
<td></td>
</tr>
<tr>
<td>Carpenters</td>
<td>$58,106</td>
</tr>
<tr>
<td>Construction laborers</td>
<td>$39,920</td>
</tr>
<tr>
<td>Drywall & ceiling tile</td>
<td>$54,361</td>
</tr>
<tr>
<td>installers</td>
<td></td>
</tr>
<tr>
<td>Roofers</td>
<td>$54,424</td>
</tr>
</tbody>
</table>

The current educational attainment of people in growing mid-wage occupations shows that the majority of job holders have at least some college or postsecondary preparation. Although those with a high school diploma or less, do have opportunities to hold mid-wage jobs, the options are much more limited among growing mid-wage occupations.

People can move from lower-wage to mid-wage occupations as they advance their careers in the same industry. Health services is a good example. To move into a mid-level occupation typically requires an associates degree or postsecondary vocational award (e.g., a professional certificate)—anywhere from a few months to a couple of years of additional preparation. There is a large pool of people already working in lower-wage jobs in health services that could move up.

English Skills

In order to even reach the “ramp” that would lead to a bridge to a mid-wage job, critical skills such as basic English are in high demand among lower wage workers in the region. In addition to the costs of English as a Second Language (ESL) courses, the nature of low-wage work is that people typically have more than one job. This severely limits their ability to take part in formal classes such as at community colleges with semester formats and limited availability on weekends. To help mitigate these mismatches of supply and need, the local nonprofit Building Skills Partnership works with employers and unions to provide janitors in the region with ESL and basic computer literacy training at the worksite and during working hours in order to reach out to the most workers with the greatest needs.

People in mid-wage occupations can also change industries—as some industries are growing and pay more than others. Computer support specialists are a good example. People in this occupation can make very different wages if they work in business services ($31,892) or internet service providers and web search portals ($61,497). Even parts of the same industry, such as construction, can pay differential amounts. Drywall and ceiling tile installers, for example, in nonresidential building construction make much more ($60,075) than the same occupation in residential building construction ($45,957). Of course, in all these examples, while there are probably some skill differences that help explain varying wages, the skills differences are greater across occupations.

What are possible career paths related to growing occupations?

Each of the sectors of Health Services, IT Support Services, and Construction are characterized by strong growth in a variety of related mid-wage occupations in Silicon Valley. The discussion below begins with presenting some of these top growing mid-wage occupations and then exploring lower wage occupations that could have the potential for moving into these mid-wage occupations. Additionally, potential paths upward to high-wage occupations in growing demand are identified as well as potential lateral transitions for attaining higher earnings.
Opportunities in Health Services are expanding due in part to the growing needs of an aging population. The changing patterns in service delivery from hospital-based care to out-patient and home care create different occupational needs. Additionally, new technology creates demand for new specialized skills.

In Health Services, there is a natural progression from lower to mid-wage occupations and even higher. In the middle of Figure 6, are six of the top growing mid-wage occupations with varying levels of skill and earnings.

The box below (Figure 6) contains a number of lower wage occupations with significant employment shares that could provide a starting point for people to move into the growing mid-wage occupations above. From the mid-wage to the high-wage level, the paths for progression become more specialized and typically more costly in terms of time and fees.

Educational requirements for these growing mid-wage occupations in Health range from moderate on-the-job training to acquiring an Associate or Bachelor Degree. In addition to upgrading skills, earnings mobility can be achieved by transitioning from one industry to another. For example, in most Health fields, this can be achieved by working in a hospital. Biological Technicians can make wage gains by moving into R&D services.

Figure 6: Health Career Ladders

<table>
<thead>
<tr>
<th>High Wage Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registered Nurses</td>
</tr>
<tr>
<td>Pharmacists</td>
</tr>
<tr>
<td>Medical & Health Service Managers</td>
</tr>
<tr>
<td>Biomedical Engineers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Growing Mid Wage Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dental Hygienists</td>
</tr>
<tr>
<td>Medical & Clinical Laboratory Technicians</td>
</tr>
<tr>
<td>Licensed Practical/Vocational Nurses</td>
</tr>
<tr>
<td>Biological Technicians</td>
</tr>
<tr>
<td>Pharmacy Technicians</td>
</tr>
<tr>
<td>Medical Assistants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Wage Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Home Health Aides</td>
</tr>
<tr>
<td>• Personal and Home Care Aides</td>
</tr>
<tr>
<td>• Child Care Workers</td>
</tr>
<tr>
<td>• Pharmacy Aides</td>
</tr>
<tr>
<td>• Physical Therapist Aides’</td>
</tr>
<tr>
<td>• Hairdressers, Hairstylists & Cosmetologists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lateral Transitions for Mid-Wage Occupations by Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Assistants</td>
</tr>
<tr>
<td>Offices of Other Health Practitioners</td>
</tr>
<tr>
<td>$22,682</td>
</tr>
</tbody>
</table>
Technology pervades all aspects of economic activity today. The activities of placing an order at the coffee shop, paying a bill online, or accessing shared databases with coworkers on an internal network all require computer systems of varying scale that must be set up and maintained by skilled technicians.

Growing mid-wage occupations in Information Technology Support include a range of skill requirements and earnings levels. As in Health Services, meaningful career progression can be pursued within the mid-wage level (Figure 7).

Moving into these mid-wage occupations requires vocational training or an Associate or Bachelor Degree. Moving into high-wage occupations typically requires a four-year university degree.

There is considerable opportunity for earnings mobility in IT Support through industry switches. In some instances, such a move can mean a move into the high-wage category. Computer Support Specialists in Business Support Services can double their earnings of roughly $30,000 by moving into Internet Service Providers & Web Search Portals and quadruple their earnings by moving to Business Schools and Computer & Management Training.

Figure 7: Information Technology Support Career Ladders

<table>
<thead>
<tr>
<th>High Wage Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Systems Analysts</td>
</tr>
<tr>
<td>Network Systems and Data Communications Analysts</td>
</tr>
<tr>
<td>Computer and Information Systems Managers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Growing Mid Wage Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer, Automated Teller & Office Machine Repairers</td>
</tr>
<tr>
<td>Postsecondary Vocational Award</td>
</tr>
<tr>
<td>Computer Support Specialists</td>
</tr>
<tr>
<td>Associate Degree</td>
</tr>
<tr>
<td>Media & Communication Equipment Workers</td>
</tr>
<tr>
<td>Long Term On-The-Job Training</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Wage Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tellers</td>
</tr>
<tr>
<td>• Data Entry Keyers</td>
</tr>
</tbody>
</table>

Lateral Transitions for Mid-Wage Occupations by Industry

<table>
<thead>
<tr>
<th>Computer Support Specialists</th>
<th>Computer, Automated Teller & Office Machine Repairers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Support Services</td>
<td>Internet Service Providers & Web Search Portals</td>
</tr>
<tr>
<td>$31,892</td>
<td>$61,497</td>
</tr>
<tr>
<td>Business Schools and Computer & Management Training</td>
<td>Electronic & Precision Equipment Repair & Maintenance</td>
</tr>
<tr>
<td>$119,767</td>
<td>$39,367</td>
</tr>
<tr>
<td>Computer & Peripheral Equipment Manufacturing</td>
<td>$57,216</td>
</tr>
</tbody>
</table>
Although new residential construction is currently in decline other construction activities continue. California’s recently passed infrastructure bonds will create new demand for skilled workers in building bridges and roads. In addition, commercial construction continues in the region, and new interest in green building is spurring the development of market niches in environmentally sound construction for remodeling and new building.

Many of the top growing mid-wage occupations in the Valley are in the Construction Industry. These include a wide range of earnings and skills levels (Figure 8). The Construction industry offers the textbook example for accessible and viable career ladders. Movement up from lower to mid-wage occupations is primarily through on-the-job training and extensive opportunity for earnings mobility exists within the middle wage range. First-Line Supervisors offers an example of how relevant work experience can lead to the high-wage category. Additionally, unlike most career ladders, many years of experience can lead to business ownership as an independent building contractor.

There is also opportunity for Construction workers to improve their earnings by taking their skills to a different building sector. For example, Plumbers and Electricians improve earnings similarly by moving from Residential Construction to Building Equipment Contractors. Drywall Installers can increase earnings by 30% by moving from residential to nonresidential construction. Construction Laborers generally enjoy higher earnings in Highway, Street and Bridge Construction, and Inspectors can earn in the high-wage range working in local government.

Figure 8: Construction Career Ladders

High Wage Occupations
First-Line Supervisors/Managers of Construction Trades & Extraction Workers

Growing Mid Wage Occupations

- Construction & Building Inspectors
 - Work experience in a related occupation
- Electricians
 - Long term on-the-job training
- Plumbers, Pipefitters & Steamfitters
 - Long term on-the-job training
- Carpenters
 - Long term on-the-job training
- Roofers
 - Moderate term on-the-job training
- Drywall & Ceiling Tile Installers
 - Moderate term on-the-job training
- Architectural & Civil Drafters
 - Postsecondary Vocational Award
- Construction Laborers
 - Moderate term on-the-job training

Low Wage Occupations

- Helpers–Painters, Paperhangers, & Stucco Masons
- Helpers, All Other Construction Trades; Grinding & Polishing Workers, Hand
 Landscaping & Groundskeeping Workers

Lateral Transitions for Mid-Wage Occupations by Industry

<table>
<thead>
<tr>
<th>Plumbers, Pipefitters & Steamfitters</th>
<th>Electricians</th>
<th>Construction Laborers</th>
<th>Drywall & Ceiling Tile Installers</th>
<th>Construction & Building Inspectors</th>
<th>Carpenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$59,616</td>
<td>$69,720</td>
<td>$47,800</td>
<td>$29,728</td>
<td>$51,087</td>
<td>$45,957</td>
</tr>
<tr>
<td>Building Equipment Contractors</td>
<td>$49,749</td>
<td>$49,749</td>
<td>$49,749</td>
<td>$49,749</td>
<td>$49,749</td>
</tr>
<tr>
<td>Building Finishing Contractors</td>
<td>$37,265</td>
<td>$37,265</td>
<td>$37,265</td>
<td>$37,265</td>
<td>$37,265</td>
</tr>
<tr>
<td>Highway, Street & Bridge Construction</td>
<td>$49,087</td>
<td>$49,087</td>
<td>$49,087</td>
<td>$49,087</td>
<td>$49,087</td>
</tr>
<tr>
<td>Residential Building Construction</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>Nonresidential Building Construction</td>
<td>$48,032</td>
<td>$48,032</td>
<td>$48,032</td>
<td>$48,032</td>
<td>$48,032</td>
</tr>
<tr>
<td>Nonresidential Building Construction</td>
<td>$58,018</td>
<td>$58,018</td>
<td>$58,018</td>
<td>$58,018</td>
<td>$58,018</td>
</tr>
<tr>
<td>Local Public Administration</td>
<td>$85,280</td>
<td>$85,280</td>
<td>$85,280</td>
<td>$85,280</td>
<td>$85,280</td>
</tr>
<tr>
<td>Foundation, Structure & Building Ext</td>
<td>$47,491</td>
<td>$47,491</td>
<td>$47,491</td>
<td>$47,491</td>
<td>$47,491</td>
</tr>
<tr>
<td>Construction & Building Inspectors</td>
<td>$60,772</td>
<td>$60,772</td>
<td>$60,772</td>
<td>$60,772</td>
<td>$60,772</td>
</tr>
</tbody>
</table>
Training Opportunities in the Region

Silicon Valley is well-positioned to be a driver of new occupational demand through both the generation and the early adoption of new technology. New occupational opportunity is emerging from technological advances and new market demand for products and services. For example, the complexities of new technology in the areas of medical technology require the specialized expertise of multiple individuals for conducting tests, process monitoring, and interpreting results. Further, as waves of workers reach retirement, demand is quickly growing in more traditional technical fields. Faced with the dual challenges of dropping high school graduation rates and rising college tuition costs, can our region meet the growing demands for occupational training?

Looking at allied health fields as an example, during the 2006-2007 academic year 1,433 students were enrolled in Silicon Valley community colleges in the programs of Nursing, Medical Lab Technician, Radiology Technology, Respiratory Therapy, Pharmacology, and Biotechnology. (See Appendix for programs by college). Only in Medical Lab Technician and Biotechnology programs are there as many students enrolled as applied for the programs. In other critical training programs, the number of applicants far exceeds the number of seats available. For all nurse training (licensed vocational and associate programs), there were seven applicants for every single enrolled student. The ratios of five applicants for every seat in Radiology and four applicants for every seat in Respiratory Therapy suggest that considerable more demand for training exists than the region’s colleges are able to provide.

In addition to course availability, the acquisition of new skills requires time and money. Typically these allied health programs take two years to complete and cost a total of $2,400 to $4,400.

Figure 9

Workforce Training in Health Care Occupations

Number and Ratio of Applicants to Openings
Silicon Valley Colleges 2006-2007

Source: Silicon Valley Community Colleges
Analysis CEI

4 Nationally college tuition has risen faster than inflation for the last 26 years (Kim, et al. 2007, 23)
Preparing People for Opportunity in Turbulent Times

The pace of change is fast. Firms and people need the flexibility and support to quickly adapt to the new speed of changing market forces. Intrinsic to these new market forces are uncertainty and risk, job volatility, and demand for new skills.

When social cohesion crumbles, there are real ramifications in an innovation economy. Chairman of the Federal Reserve, Ben Bernanke, explains that while the ability of our labor and capital markets to accommodate and adapt to economic change has made possible our strong productivity growth, these dynamics have also produced painful results for people whose skills become obsolete in the process (2007). Further, he cautions: “If we did not place some limits on the downside risks to individuals affected by economic change, the public at large might become less willing to accept the dynamism that is so essential to economic progress” (2007). In addition, Martin Wolf, Economist at the Financial Times argues, rising inequality causes declining equality of opportunity, and “it also makes losing a job costlier, more objectionable and so more resisted” (2007).

Joint Venture’s “Next Silicon Valley” report describes trust as core to an innovation economy in which entrepreneurs, investors, and researchers collaborate in a highly competitive environment. “Trust has become important because it fosters the cooperation and risk sharing that promotes innovation and flexible responses to change” (Joint Venture, 2001, 30). Silicon Valley will be a resilient region when the region can support its people, companies, and communities as they mutually adapt to increased economic volatility (Joint Venture, 2001).

“Unless social innovation accompanies technology innovation, the relentless flow of new innovations can have real and growing downsides — downsides that threaten the special habitat that births them.” (Joint Venture, 2001).

What kinds of social innovation will be required to prepare people for opportunity in turbulent times?

- If risk and uncertainty are sources of economic progress and social distress, how can Silicon Valley be as innovative in reconciling these realities as it has been in creating new technologies and business models?
- If there are growing mid-wage occupations, how can Silicon Valley systematically prepare people for these opportunities?
- If there are growing shortages of mid-wage workers, how can the region improve its high school graduation rates and participation in post-high school education and training?
- If worker displacement continues, how can the resulting real personal and social costs be mitigated while connecting people to opportunities in other parts of the economy?
- If Silicon Valley continues to innovate in a growing global marketplace, how can the region ensure that its own people participate in the resulting economic opportunities that are created?
A P P E N D I X A

Front Page Statistics

Area

Population
Data for the Silicon Valley population come from the E-1: City/County Population Estimates with Annual Percent Change report by the California Department of Finance and are for Silicon Valley cities. Population estimates are for 2007.

Jobs
Jobs data for the front page statistic is based on Quarter 2 2007 employment estimates. Silicon Valley employment data are provided by the California Employment Development Department and are from Joint Venture: Silicon Valley Network's unique data set. The data set counts jobs in the region and uses data from the Quarterly Census of Wages and Employment program that produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Employment data include members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Covered workers may live outside of the Silicon Valley region. Multiple jobholders (i.e., individuals who hold more than one job) may be counted more than once. Data for Quarter 2 2007 are preliminary-revised. Data is for Santa Clara and San Mateo Counties, Scotts Valley, Fremont, Newark, and Union City.

Average Wage
Figures were derived from the EDDJoint Venture: Silicon Valley Network data set and are reported for Fiscal Year 2007 (Q1 & Q4 2006, Q1 & Q2 2007). Wages were adjusted for inflation and are reported in 2007 dollars using the U.S. city average Consumer Price Index (CPI) of all urban consumers, published by the Bureau of Labor Statistics. Data for Quarter 2 2007 are preliminary-revised. Data is for Santa Clara and San Mateo Counties, Scotts Valley, Fremont, Newark, and Union City. Appendix A provides NAICS-based definitions for each of Silicon Valley's industry clusters.

Educational Attainment, Age, Ethnic Composition
Data for educational attainment, age, ethnicity, race, (front page statistic) are for Santa Clara and San Mateo Counties and are derived from the United States Census Bureau, 2006 American Community Survey.

Foreign Born
Data for foreign born come from the United States Census Bureau, 2006 American Community Survey and are for Santa Clara and San Mateo Counties. The category of foreign-born includes foreign-born residents, naturalized citizens, and citizens born abroad to American parent(s).

Foreign Immigration and Domestic Migration
Data come from the E-1:County Population Estimates and Components of Change by County — July 1, 2000–2007 report by the California Department of Finance and are for Santa Clara and San Mateo Counties. Estimates are for 2007 and are provisional.

People

Population Change & Net Migration Flows
Statistics are from the E-1: County Population Estimates and Components of Change by County — July 1, 2000–2007 report by the California Department of Finance and are for Santa Clara and San Mateo Counties. Estimates for 2007 are provisional. Net migration includes all legal and unauthorized foreign immigrants, residents who left the state to live abroad, and the balance of hundreds of thousands of people moving to and from California from within the United States.

Population shares that speak language other than English at home
Data are from the United States Census Bureau, 2002 and 2006 American Community Survey. The data are for Santa Clara and San Mateo counties.

Educational Attainment
Data for educational attainment are for Santa Clara and San Mateo Counties and are derived from the United States Census Bureau, 2006 American Community Survey.

Science and Engineering Degrees Conferred
Data are from the National Center for Education Statistics. Regional data includes the following post secondary institutions: Menlo College, Cogswell Polytechnical College, University of California at Berkeley, Davis, San Francisco, and Santa Cruz, Stanford University, San Francisco State University, Santa Clara University, San Jose State University and University of San Francisco. The academic disciplines include: computer and information sciences, engineering, engineering-related technologies, biological sciences, life sciences, mathematics, physical sciences, and science technologies. Data were analyzed based on citizenship and level of degree (bachelors, masters or doctorate). U.S. totals came from the National Science Board Science and Engineering Indicators 2006.

Economy

Innovation

Value Added
Value added per employee is calculated as regional gross domestic product (GDP) divided by total employment. GDP estimates the market value of all final goods and services. GDP and employment data are from Moody’s Economy.com. Silicon Valley data is for Santa Clara and San Mateo Counties.

Patents
Patent data is provided by the U.S. Patent and Trademark Office and consists of utility patents granted by inventors. Population figures are from Economy.com. Geographic designation is given by the location of the first inventor named on the patent application. Silicon Valley patents include only these patents filed by residents of Silicon Valley cities. Data are based on Joint Venture’s ZIP code-defined region of Silicon Valley.

Silicon Valley Firms with Affiliates Abroad
Information on foreign firms located in Silicon Valley came from Unilink World Business Publications. Employment numbers for these firms were provided by Halpern Info Services. Data are based on Joint Venture’s ZIP code-defined region of Silicon Valley.

Venture Capital
Data are provided by Prowaterhouse/Cosper/Thorman Venture Economics/National Venture Capital Association MoneyTree(TM) Survey. Venture capital data for cleantech investments are provided by the Cleantech Network™ LLC. For the index of Silicon Valley, only investments in firms located in Silicon Valley based on Joint Venture’s ZIP code-defined region, were included. Total 2007 venture capital funding level is an estimate based on the first three quarters of data and historical growth patterns in the fourth quarter. Values are inflation-adjusted and reported in 2007 dollars, using the CPI for the U.S. City Average from the Bureau of Labor Statistics.

Cleantech Venture Capital
Data provided by Cleantech Group™ LLC. For this analysis, venture capital is defined as disclosed clean tech investment deal totals. Data are based on Joint Venture’s ZIP code-defined region of Silicon Valley. The Cleantech Group describes cleantech as new technology and processes, spanning a range of industries that enhance efficiency, reduce or eliminate negative ecological impact, and improve the productive and responsible use of natural resources. See box for cleantech industry segments.

Broadband Adoption in California
Reported broadband adoption rates for California and regions in the State come from “Broadband for All Gaps in California’s Broadband Adoption and Availability” by Jed Kolko (California Economic Policy Report, Public Policy Institute of California, 2007) and based on data from Foresight Research. San Francisco Bay Area includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Broadband is defined as download speeds equal to or faster than 220 kbps.

Global Broadband Subscribers
Data are from the Organisation for Economic Co-operation and Development, ICT database and Eurostat, Community Survey on ICT usage in households and by individuals. April 2007. Broadband is defined as download speeds equal to or faster than 256 kbps.
Employment Jobs

SiOn Valley employment are provided by the California Employment Development Department and are from Jont Venture: Silicon Valley Network’s unique data set. The data set covers employment in the Silicon Valley region, and provides the number of people who were employed in the Quarterly employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Employment data exclude members of the armed forces, the self-employed, proprietors, domestic workers, unip family workers, and railroad workers covered by the railroad unemployment insurance system. Covered workers may live outside of the Silicon Valley region. Multiple job holders (i.e., individuals who hold more than one job) may be counted more than once. Data for Quarter 2 2007 are preliminary-revised. Data is for Santa Clara and San Mateo Counties, Scotts Valley, Fremont, Newark, and Union City.

Employment by Cluster and Industry

Figures were derived from the EOJ/Ente Venture: Silicon Valley Network data set and are based on the North American Industry Classification System (NAICS). Data are for Quarter 4 2006 are preliminary-revised. Data is for Santa Clara and San Mateo Counties, Scotts Valley, Fremont, Newark, and Union City. Appendix B provides NAICS-based definitions for each of Silicon Valley’s industry clusters.

Green Establishments and Employment

Using a set of companies identified as having primary activities that fall roughly within the definition of cleantech used by the Cleantech Group™, LLC described above, establishment, and job growth since 1990 were tracked using the National Establishments Time-Series database based on Dun & Bradstreet establishment data. This sample offers a conservative estimate and is by no means a comprehensive accounting of the industry in California Silicon Valley data for San Mateo and Santa Clara Counties.

Workforce and Unemployment

Labor force and unemployment data are for the month of September and are civil employment figures from the Labor Market Information Division of the California Employment Development Department. Civilian employment counts the number of working people by where they live. This includes business owners, the self-employed, unip family workers, private household workers, and wage and salary workers. A person with more than one job is counted only once. Unemployment measures the share of residents in the workforce actively looking for work. County labor force data are not adjusted for seasonality. Employment data are for Santa Clara and San Mateo Counties. 2007 data are preliminary estimates.

Income Real per capita income

Total personal income and population data are from Econocolm. Income values are inflation-adjusted and reported in 2007 dollars, using the CPI for the U.S. City Average from the Bureau of Labor Statistics. Silicon Valley data includes Santa Clara and San Mateo Counties.

Distribution of Income and Median Household Income

Data for Income Distribution and for Median Household Income are from the American Community Survey from the U.S. Census Bureau. Silicon Valley data includes Santa Clara and San Mateo Counties.

Relative Cost of Living

The regional cost of living index was provided by Ecocnom. San Francisco data is based on the San Francisco-San Mateo-Woodside Metropolitan Division. San Jose data is based on San Jose-Santa Clara-Sunnyvale Metropolitan Statistical Area.

Society

High School Graduation Rate

Data for the most current year are preliminary and are provided by the individual school districts in Santa Clara County, San Mateo, New Haven, Newark, Sequoia, and Scotts Valley via their CSIS reporting. CSIS is a program that was created to fulfill California’s requirement per the Federal legislation, No Child Left Behind Act of 2001 (NCLB), to implement a statewide accountability program that measures the progress of its students and schools over time through the collection and analysis of disaggregated data. In response, California developed CSIS, which establishes two key components necessary for a long-term assessment and accountability system:

• Assignment of a unique student identifier to each K-12 pupil enrolled in a public school program or in a charter school that will remain with the student throughout his or her academic ‘career’ in the California public school system;
• Establishment of a longitudinal database of disaggregated student information that will enable state policy-makers to determine the success of its program of educational reform.

Historical data are final and are from the California Department of Education. The methodology used calculates an approximate probability that one will graduate on time by looking at the number of 12th grade graduates and number of 12th, 11th, 10th and 9th grade dropouts over a four year period.

Dropout rates

Data for the most current year are preliminary and are provided by the individual school districts in Santa Clara County, San Mateo, New Haven, Newark, Sequoia, and Scotts Valley via their CSIS reporting. CSIS is a program that was created to fulfill California’s requirement per the Federal legislation, No Child Left Behind Act of 2001 (NCLB), to implement a statewide accountability program that measures the progress of its students and schools over time through the collection and analysis of disaggregated data. In response, California Legislature enacted SB1453, which establishes two key components necessary for a long-term assessment and accountability system:

• Assignment of a unique student identifier to each K-12 pupil enrolled in a public school program or in a charter school that will remain with the student throughout his or her academic ‘career’ in the California public school system;
• Establishment of a longitudinal database of disaggregated student information that will enable state policy-makers to determine the success of its program of educational reform.

Historical data are final and are from the California Department of Education. The methodology used calculates a 4-year derived dropout rate that is an estimate of the percent of students who would drop out in a four year period based on data collected for a single year. Beginning in 2002-03, the California Department of Education adopted the National Center for Educational Statistics (NCES) Dropout definition following the new guidelines, the California Department of Education now defines a dropout as a person who:

1) Was enrolled in grades 7, 8, 9, 10, 11 or 12 at some time during the previous school year AND left school prior to completing the school year AND has not returned to school as of Information Day.
2) Did not begin attending the next grade (7, 8, 9, 10, 11 or 12) in the school to which they were assigned or in which they had pre-registered or were expected to attend by Information Day.

Kindergarten Readiness & Childcare Arrangements

Applied Survey Research conducted kindergarten readiness studies for San Mateo and Santa Clara Counties. The studies were conducted for the Santa Clara County Partnership for School Readiness, Peninsula Partnerships for Children, Youth and Families, and United Way of Silicon Valley. Readiness scores are based on a representative sample of kindergarten children from San Mateo and Santa Clara counties. San Mateo County scores are based on 527 students in 2001, 541 students in 2002, 486 students in 2003, and 632 students in 2005 (weighted N). Santa Clara County scores are based on 699 students in 2004 and 749 students in 2005 (weighted N), and 714 students in 2006 (weighted N). Averages adhere to 1 to 4 scale, where 1 is equivalent to No; 2; 3 is equivalent to Beginning; 4 is equivalent to In progress, and 5 is equivalent to Proficient.

Teachers and parents of kindergarten children reported on the types of child care arrangements children experienced the year prior to entering kindergarten. Percentages are based on the sample weight of 1,174-1,149 for Santa Clara and San Mateo counties. Percentages sum to more than 100% because children were cared for in more than one setting. 2006 percentages are based on 602-615 people who completed a Parent Information Form. The star flags a significant increase in preschool attendance according to a chi-square test, p < .05. In 2004, only preschool experience data were gathered.

Third Grade Reading

Data are from the California Department of Education, CAT/6 Research Files for San Mateo and Santa Clara Counties. In 2003, the California Achievement Test CAT/6 replaced the Stanford Achievement Test, edition tenth (SAT/9), as the national norm-referenced test for California public schools, CAT/6 is a norm-referenced test; student’s scores are compared to national norms and do not reflect absolute achievement. This indicator tracks third grade reading scores on the California Achievement Test, sixth edition (CAT/6), which measures performance relative to a national distribution.

Arts & Culture

The analysis of the region’s arts nonprofits is based on the Core files from the National Center for Charitable Statistics (NCCS) at the Urban Institute. The NCCS produces the database based on IRS tax return data for public charities, private foundations, and non-501(c)(3) organizations filing IRS Forms 990. Data are based on Joint Venture’s ZIP-code-defined region of Silicon Valley.

Cleantech Industry Segments

Energy Generation

Wind Solar Hydro/Marine Biofuels Geothermal Other

Energy Storage

Fuel Cells Advanced Batteries Hybrid Systems

Energy Infrastructure

Management Transmission

Energy Efficiency

Lighting Buildings Glass Other

Transportation

Vehicles Logistics Structures Fuels

Water & Wastewater

Water Treatment Water Conservation Wastewater Treatment

Air & Environment

Cleaning/deten t Emissions Control Monitoring/Compliance Trading & Offsets

Materials

Nano Bio Chemical Other

Manufacturing/Industrial

Advanced Packaging Monitoring & Control Smart Production

Agriculture

Natural Pesticides Land Management Aquaculture

Recycling & Waste

Redevelopment Waste Treatment Source:Cleantech Group™, LLC
Appendix A

Child Immunizations

Health Insurance Coverage and Source
All data on insurance coverage are drawn from the California Health Interview Survey carried out by the UCLA Center for Health Policy Research. For health insurance coverage, the indicator measures the share of people who answered “yes” when asked by the interviewer whether or not they are covered by health insurance. Data are for Santa Clara and San Mateo Counties. The indicator gives no indication of the quality or comprehensiveness of insurance coverage.

Dental Insurance Coverage
Data on dental insurance coverage are from the 2005 California Health Interview Survey. UCLA Center for Health Policy Research. The indicator measures the share of people who answered “yes” when asked by the interviewer whether or not they are covered by dental insurance. Data are for Santa Clara and San Mateo Counties. The indicator gives no indication of the quality or comprehensiveness of insurance coverage.

Dentistry

Asthma
Data on asthma instances are drawn from the California Health Interview Survey. UCLA Center for Health Policy Research. Data are for Santa Clara and San Mateo Counties.

Obesity
Data on adult and adolescent obesity are based on results from the California Health Information Survey. UCLA Center for Health Policy Research. For adults, “Overweight or Obese” include the respondents who have a Body Mass Index (BMI) of 25 or greater for adolescents, “Overweight or Obese” includes the respondents who have a BMI in the highest 95 percentile with respect to their age and gender. Data are for Santa Clara and San Mateo Counties.

Share of Youth in Health Fitness Zone
The indicator reports the number of students who met the criterion-referenced standard for the body composition component of the California Fitness Test. Data are for Santa Clara and San Mateo Counties. The Physical Fitness Test is administered in grades five, seven and nine in California public schools by the California Department of Education. The test used for physical fitness testing is the FITNESSGRAM®, designed for this purpose by the State Board of Education.

Child Abuse
Child maltreatment data are from the California Children’s Services Archive, CVSS/CMS 2006 Quarter 4 Extract. Data are downloaded from the Center for Social Services Research at the University of California at Berkeley. Population data comes from the California Department of Finance. Data are for Santa Clara and San Mateo Counties.

Adult & Juvenile Violent Offenses/Drug & Alcohol Rehabilitation Services
Crime data are from the FBI Uniform Crime Reports as reported by the California Department of Justice in their annual “Crime Justice Profiles.” Felony offenses include violent, property and drug offenses. Drug rehabilitation data include the number of clients utilizing residential and outpatient drug and alcohol rehabilitation services provided by Santa Clara and San Mateo Counties. Data are an unduplicated count of residents served.

Place

Environment

Protected Open Space
Data are from GreenInfo Network’s Bay Area Protected Lands Database, and are for Santa Clara and San Mateo Counties, Fremont, Newark, and Union City. Santa Cruz county data was excluded because of data inconsistency. Data include lands owned by public agencies and non-profit organizations that are protected primarily for open space uses and that are accessible to the general public. Without any special permission. Previously parks less than 10 acres were excluded from the dataset, but in the 2006 update, there was no acreage cut-off. The database was updated in 2007, slight discrepancies in the data come from areas of SF Watershed lands were corrected to not include areas where 280 passed through. Corrections were also made to Don Edwards Wildlife Area.

Although the data depicts a 0.7% drop in protected open space from 2006-2007, overall acreage has increased in the past year. There are some major acquisitions from previous years that were not incorporated into GreenInfo Network’s database until this year, and areas of land acquired by the county housing management. Some have been acquired this year and are adding to the protected acreage including Mindigo Hill in San Mateo which is 7,100 acres, Tyler Ranch in the East Bay which is 1,600 acres and Roche Ranch in Sonoma County, 1,600 acres. GreenInfo Network is scheduled to have a new release in early 2008.

Water Consumption
Data for this indicator were provided by the Bay Area Water Supply and Conservation Agency (BAWSCA). Data is compiled annually among BAWSCA agencies to update key information and assist in projecting urban demand and population. Gross per capita consumption includes residential, non-residential, recycled and unaccounted for water use among the Santa Clara and San Mateo County BAWSCA agencies.

Electricity Consumption
Electricity consumption data provided by the California Energy Commission. Silicon Valley is defined by Santa Clara and San Mateo Counties.

Renewable Energy
The number and size (watts) of rebates granted for the installation of renewable energy systems was provided by the California Energy Commission, California Department of Energy. Silicon Valley is defined by Santa Clara County, plus adjacent parts of San Mateo, Alameda, and Santa Cruz Counties.

Vehicle Miles of Travel & Gas Prices
Vehicle Miles of Travel estimates are from the Caltrans 2006 “California Motor Vehicle Stock, Travel and Fuel Forecast” and include state highway systems and other roads. Gas prices come from the Weekly Retail Gasoline and Diesel Prices (Cents per Gallon, including Taxes) data series provided by the U.S. Department of Energy, Energy Information Administration. Gas prices are California All Grades All Formulations Retail Gasoline Prices (including taxes) and have been adjusted into 2007 dollars using the U.S. city average Consumer Price Index (CPI) of all urban consumers published by the Bureau of Labor Statistics.

Rides Per Capita & Change in Revenue Hours
Data are the sum of annual ridership on the light rail and bus systems in Santa Clara and San Mateo counties and rides on Caltrain. Data are provided by SamTrans, Valley Transportation Authority, Altamont Commuter Express and Caltrain. Revenue hours are the amount of time that a bus or train is in service. The sum of revenue hours across the region aggregates data provided by Sam Trans, Valley Transportation Authority, Altamont Commuter Express and Caltrain. Monthly estimates were made for July through December 2007 using a rolling average of the past three years from the January-June share of ridership and revenue hours.

Means of Commute
Data on the means of commute to work are from the United States Census Bureau, American Community Survey. Data are for workers 16 years old and over residing in Santa Clara and San Mateo Counties pertaining to the geographic location at which workers carried out their occupational activities during the reference week whether or not the location was inside or outside the county limits. The data on employment status and journey to work relate to the reference week that is, the calendar week preceding the date on which the respondents completed their questionnaires or were interviewed. This week is not the same for all respondents since the interviewing was conducted over a 12-month period. The occurrence of holidays during the relative reference week could affect the data on actual hours worked during the reference week but probably had no effect on overall measurement of employment status. People who used different means of transportation on different days of the week were asked to specify the one they used most often, that is, the greatest number of days. People who used more than one mean of transportation on different days were asked to report the one used for the longest distance during the work trip. The category “Car, truck or van” includes workers using a car (including company cars but excluding taxis), a truck of one-ton capacity or less, or a van. The category “Public transportation” includes workers who used a bus or trolley bus, streetcar or trolley car, subway or elevated, railroad, or ferryboat, even if each mode is not shown separately in the tabulation. The category “Other means” includes workers who used a mode of travel that is not identified separately within the data distribution.

Alternative Fuel Vehicles
Statistics are from the California Energy Commission (CEC), compiled using vehicle registration data from the California Department of Motor Vehicles. Alternative fuel vehicles include all hybrids and electric vehicles as well as vehicles using any type of alcohol-based (ethanol, methanol, flex fuel) or gaseous fuels (natural gas, propane, other gaseous). Diesel engine vehicles are not included in the analysis, because there is no differentiation given between vehicles running on carbon and those running on biological diesel fuels. Silicon Valley data includes Santa Clara and San Mateo Counties.

Vehicles Registered by Fuel Efficiency
Data are from the California Air Resources Board. Silicon Valley is defined as Santa Clara and San Mateo Counties.

Fuel Consumption

Air Quality
Ozone data come from the California Air Resources Board. 2007 Air Quality Data DVD. Data is for Santa Clara and San Mateo Counties and measures the number of days exceeding the State 8-Hour Ozone Standard.
Land Use

Land Use Density
Joint Venture Silicon Valley Network conducted a land-use survey of all cities within Silicon Valley. Collaborative Economics completed survey compilation and analysis. Participating cities include: Atherton, Belmont, Cupertino, Foster City, Fremont, Gilroy, Hillsborough, Los Altos Hills, Los Gatos, Monte Sereno, Morgan Hill, Mountain View, Newark, Palo Alto, Redwood City, San Carlos, San Jose, San Mateo, Santa Clara, Saratoga, Sunnyvale, and Union City. Santa Clara and San Mateo Counties are also included. Most recent data are for fiscal year 2007 (July 1-6 June 07). The average units per acre of newly approved residential development are reported directly for each of the cities and counties participating in the survey.

Housing and Development Near Transit
Data are from Joint Venture Silicon Valley Network Survey of Cities. The number of new housing units and the square feet of commercial development within one-quarter mile of transit are reported directly for each of the cities and counties participating in the survey. Places within one-quarter mile of transit are considered “walkable” (i.e. within a 5- to 10-minute walk for the average person).

Building Affordable Housing
Data are from the Joint Venture Silicon Valley Network Survey of Cities. Affordable units are those units that are affordable for a four-person family earning up to 80% of the median income for a county. Cities use the U.S. Department of Housing and Urban Development’s (HUD) estimates of median income to calculate the number of units affordable to low-income households in their jurisdictions.

Housing

Rental Affordability
Data on average rental rates are from RealEstate.com survey of all apartment complexes in Santa Clara and San Mateo Counties of 40 or more units. Rates are the prices charged to new residents when apartments turn over and have been adjusted into 2007 dollars using the U.S. city average Consumer Price Index (CPI) of all urban consumers, published by the Bureau of Labor Statistics.

Home Affordability
Data are from the California Association of REALTORS® (C.A.R.) Housing Affordability Index. C.A.R. stopped producing the Housing Affordability Index for all home buyers since the end of 2005 and now produces a Housing Affordability Index for first-time buyers that has been updated historically to 2003. The data for Silicon Valley includes Santa Clara and San Mateo Counties and is based on the median price of existing single family homes sold from C.A.R.’s monthly existing home sales survey, the national average effective mortgage interest rate as reported by the Federal Housing Finance Board, and the median household income as reported by Claritas/PMDC. Quarterly Sales: Volume for Existing Single Family Detached Home Sales were provided by DataQuick Information Systems.

Residential Foreclosure Activity
Silicon Valley foreclosure data is for all home types and comes from DataQuick Information Systems. Data are based on Joint Venture’s ZIF-code-defined region of Silicon Valley.

Down-payment as Share of Total Price of Home
Median home prices and average down-payment shares are from DataQuick Information Systems. Data are based on Joint Venture’s ZIF-code-defined region of Silicon Valley.

Commercial Space
Data are from Callers International and cover Santa Clara County. Commercial space includes office, R&D, industrial and warehouse space. The vacancy rate is the amount of unoccupied space and is calculated by dividing the sum of the direct vacant and sublease vacant space by the building base. The vacancy rate does not include occupied space that is presently being offered on the market for sale or lease. Net absorption is the change in occupied space during a given time period. Average asking rents have been adjusted into 2007 dollars using the annual average Consumer Price Index (CPI) of all urban consumers in the San Francisco–Oakland–San Jose region, published by the Bureau of Labor Statistics.

Governance

Voter Participation & Party Affiliation
Data are from the California Secretary of State, Elections and Voter Information Division and the California State Archives Division. The eligible population is determined by the Secretary of State using Census population data provided by the California Department of Finance. Data are for Santa Clara and San Mateo Counties.

Nonprofit sector and fields of charitable giving
The analysis of the region’s nonprofit organizations is based on the Core Fikes from the National Center for Charitable Statistics (NCCS) at the Urban Institute. The NCCS produces the database based on IRS tax return data for public charities, private foundations, and non-501(c)(3) organizations filing IRS Forms 990. Data are based on Joint Venture’s ZIF-code-defined region of Silicon Valley.

City Revenue
Data for city revenue are from the State of California’s Annual Report. Data include all cities and towns and dependent special districts and do not include redevelopment agencies and independent special districts. Data include all revenue sources to cities except for utility-based services (which are self-supporting from fees and the sales of bonds), voter-approved indebtedness property tax and sales of bonds and notes. The “other taxes” and “other revenue” include revenue sources such as transportation taxes, transient lodging taxes, business license fees, other non-property taxes and intergovernmental transfers. Data are for Silicon Valley cities.

Regional - State interface: Silicon Valley’s contribution to CA State revenues
Data come from the Table B7: "Personal Income-Adjusted Gross Income by County," provided by the California Franchise Tax Board Economic and Statistical Research Bureau. Statistics were adjusted for inflation and are reported in 2007 dollars using the U.S. city average Consumer Price Index (CPI) of all urban consumers, published by the Bureau of Labor Statistics.

Special Analysis

Community College Training Programs
Data on the number of applicants and enrollment were collected for the following health care related programs: nursing, radiology technology, pharmacology, medical lab technician, and respiratory therapy. Data were provided by ten community colleges in the Silicon Valley region: Cabrillo College, College of San Mateo, De Anza College, Evergreen College, Foothill College, Mission College, College of Almaden, College of San Mateo and Skyline College.

Occupational Distribution by Low, Mid, and High Income Levels
Growing and Declining Mid-Wage Occupations
Career Ladders
Employment and wage data are from the Occupational Employment Statistics, provided by the California Employment Development Department- Labor Market Information Division. The 2006 survey reference date is May 2006 for employment and the first quarter of 2007 for wage data. The 2002 survey reference date is November 2002 for employment and the fourth quarter of 2003 for wage data. Silicon Valley includes data for Santa Clara County and San Mateo County which were combined before applying suppression. Wage distribution is based on inflation-adjusted 50th percentile annual earnings and are reported in 2007 dollars using the U.S. city average Consumer Price Index (CPI) of all urban consumers, published by the Bureau of Labor Statistics.

The Growing and Declining Mid-Wage Occupations chart includes a selection of the highest absolute growing and declining mid-wage occupations in the Construction, Health, and Information Technology Support Services sectors. Mid-wage occupations are defined by jobs with inflation adjusted median income levels between $30,000 and $60,000.

Mid-wage occupations included in career ladders are examples of top growing mid-wage occupations. A selection of related lower occupations that could have potential for moving into these mid-wage occupations were then selected. Additionally potential paths upward to high-wage occupations in growing demand are identified as well as potential lateral transitions for attaining higher earnings. Most common education-training levels are from the Bureau of Labor Statistics, Office of Occupational Statistics and Employment Projections.

Replacement Jobs
Replacement jobs projections are from the Occupational Employment Statistics, provided by the California Employment Development Department- Labor Market Information Division. Data is for Santa Clara and San Benito Counties. Wage distribution based on inflation-adjusted 50th percentile hourly earnings from the first quarter of 2006 and are reported in 2007 dollars using the U.S. city average Consumer Price Index (CPI) of all urban consumers, published by the Bureau of Labor Statistics. Wage data do not include self-employed nor unpaid family workers. Net Replacements openings are an estimate of the number of job openings expected because people have permanently left an occupation. It estimates the net movement of 1) experienced workers who leave an occupation and start working in another occupation, stop working altogether or leave the geographic area minus 2) experienced workers who move into such an opening. It does not represent the total number of jobs to be filled due to the need to replace workers.

Educational Attainment
References

Appendix B
Definitions

Industry Clusters

Computer and Communications Hardware Manufacturing

334111 Electronic Computer Manufacturing
334112 Computer Storage Devices Manufacturing
334113 Computer Terminal Manufacturing
334119 Other Computer Peripheral Manufacturing
334210 Telephone Apparatus Manufacturing
334220 Radio and Television Broadcasting and Wireless Communications Equipment Manufacturing
334240 Other Communications Equipment Manufacturing
334511 Search, Detection, Navigation, Guidance, Aeronautical and Nautical System and Instrument Manufacturing
334613 Magnetic and Optical Recording Media Manufacturing

Semiconductor and Semiconductor Equipment Manufacturing

333295 Semiconductor Manufacturing
333314 Optical and Lens Manufacturing
333413 Semiconductor and Related Device Manufacturing
334513 Instruments and Related Products Manufacturing for Measuring, Displaying, and Controlling Industrial Process Variables
334515 Instrument Manufacturing for Measuring and Testing Electric and Electrical Signals
334519 Other Measuring and Controlling Device Manufacturing

Electronic Component Manufacturing

3344111 Electronic Tube Manufacturing
3344122 Bare Printed Circuit Board Manufacturing
334415 Electronic Relator Manufacturing
334416 Electronic Coil and Transformer and Other Inductor Manufacturing
334417 Electronic Connector Manufacturing
334418 Print Wires, Assemblies (Electronic Assembly) Manufacturing
334419 Other Electronic Component Manufacturing
3359 Other Electrical Equipment and Component Manufacturing

Software

334611 Software Reproducing
511210 Software Publishers
518 Internet Service Providers, Web Search Portal Service Providers and Data Processing Services
541511 Custom Computer Programming Services
541512 Computer Systems Design Services
541519 Other Computer-Related Services

Biomedical

325411 Animal and Biological Research and Testing Laboratories
325412 Pharmaceutical Preparation Manufacturing
325413 In-Vitro Diagnostic Substance Manufacturing
325414 Biological Products (except Diagnostic) Manufacturing
334510 Medical and Surgical Equipment Manufacturing
334516 Analytical Laboratory Instrument Manufacturing
334517 Irradiation Equipment Manufacturing
339111 Laboratory Apparatus and Furniture Manufacturing
339112 Surgical and Medical Instrument Manufacturing
339113 Surgical Appliance and Supplies Manufacturing
339114 Dental Equipment and Supplies Manufacturing
341710 Research and Development in the Physical Sciences (50%)
3421 Medical and Diagnostic Laboratories

Innovation Services

52910 Miscellaneous Intermediation
541 Legal Services
5412 Accounting, Tax Preparation, Bookkeeping and Payroll Services
541380 Testing Laboratories
541611 Administrative Management and General Management Consulting Services
541612 Human Resources and Executive Search Consulting Services
541614 Process, Physical Distribution and Logistics Consulting Services
541620 Environmental Consulting Services
541690 Other Scientific and Technical Consulting Services
541710 Research and Development in the Physical Sciences (50%)

Creative Services

54131 Architectural Services
54132 Landscape Architecture Services
54134 Drafting Services
541410 Interior Design Services
541460 Industrial Design Services
541490 Graphic Design Services
541490 Other Specialized Design Services
541613 Marketing Consulting Services
5418 Advertising and Related Services
54191 Marketing Research and Public Opinion Polling
54192 Photographic Services
7111 Performing Arts Companies
711310 Independent Artists, Writers and Performers

Corporate Offices

551114 Corporate, Subsidiary and Regional Managing Offices
ACKNOWLEDGMENTS

Special thanks to the following organizations that contributed data and expertise:

1stACT
1790 Analytics
Altamont Commuter Express
Applied Survey Research
Arts Council Silicon Valley
Bay Area Water Supply and Conservation Agency
Building Skills Partnership
California Air Resources Board
California Association of Realtors
California Department of Education
California Department of Finance
California Department of Health Services
California Department of Justice
California Department of Motor Vehicles
California Department of Transportation
California Employment Development Department
California Energy Commission
California Franchise Tax Board
California Secretary of State
California State Controller
Center for Social Services Research, School of Social Welfare, University of California, Berkeley
Center for the Continuing Study of the California Economy
City Planning and Housing Departments of Silicon Valley
Cleantech Group™, LLC
Colliers International
DataQuick Information Systems
Federal Bureau of Investigation
GreenInfo Network
Kids in Common
Metropolitan Transportation Commission
Moody’s Economy.com
National Center for Education Statistics
National Center for Charitable Statistics
National Center for Health Statistics
Next 10
Nielsen/NetRatings
NOVA Workforce Investment Board
Organisation for Economic Co-operation and Development
PricewaterhouseCoopers/National Venture Capital Association MoneyTree™
Report/Thomson Financial
Public Policy Institute of California
RealFacts
SamTrans
San Mateo County
San Mateo County Human Services Agency, Planning & Evaluation
San Mateo County Office of Education
Santa Clara County
Santa Clara County Department of Alcohol & Drug Services, Alcohol & Drug Services Research Institute
Santa Clara County Office of Education
Santa Clara County Partnership for School Readiness
Silicon Valley City Managers
Silicon Valley Community Colleges
Silicon Valley Community Foundation
Silicon Valley School Districts
The David and Lucile Packard Foundation
The William and Flora Hewlett Foundation
U.S. Bureau of Labor Statistics
U.S. Census Bureau
U.S. Department of Energy
U.S. Patent and Trademark Office
UCLA Center for Health Policy Research
United Way Silicon Valley
Uniworld Business Publications
Valley Transportation Authority
Walls & Associates

JOINT VENTURE: SILICON VALLEY NETWORK

Established in 1993, Joint Venture: Silicon Valley Network provides analysis and action on issues affecting our region’s economy and quality of life. The organization brings together established and emerging leaders—from business, government, academia, labor and the broader community—to spotlight issues, launch projects, and work toward innovative solutions.

SILICON VALLEY COMMUNITY FOUNDATION

Serving all of San Mateo and Santa Clara counties, Silicon Valley Community Foundation is a partner and resource to organizations improving the quality of life in our region, and to those who want to give back locally, nationally and internationally.
2008 INDEX SPONSORS

Accenture
Accretive Solutions
Adobe Systems
AeA
AT&T
Bank of America
Bay Area Council Foundation
Bay Area SMACNA
Berliner Cohen
Bingham McCutchen
Cadence Design Systems
Cisco Systems
City of Fremont
City of Menlo Park
City of Morgan Hill
City of Palo Alto
City of Redwood City
City of San Jose
City of Santa Clara
City of Santa Cruz
Redevelopment Agency
Cogswell Polytechnical College
Colliers International
County of San Mateo
County of Santa Clara
Deloitte & Touche
El Camino Hospital Foundation
Ernst & Young
Foothill-DeAnza Community College District Foundation
Gooey Godward Kronish LLP
Half Moon Bay Brewing Company
Hoge Fenton
JETRO
Johnson Controls
Kaiser Permanente
KPMG
Lucile Packard Children's Hospital
at Stanford
McKinsey & Company
O’Connor Hospital
Oakland Athletics
Pacific Gas & Electric Company
Pipe Trades Training Center of Santa Clara & San Benito Counties
Robert Half International
SamTrans/Caltrain
San Francisco 49ers
San Jose Convention & Visitor's Bureau
San Jose Sharks
San Jose State University
Research Foundation
SanDisk
Santa Clara & San Benito County Building & Construction Trades Council
Santa Clara Valley Water District
Silicon Valley Power
SolutionSet
Stanford University
SunPower Corporation
SVB Financial Group
Synopsys
The Health Trust
Therma
University of California at Santa Cruz
Valley Medical Center Foundation
Varian Medical Systems
Volterra
WilmerHale
Wilson Sonsini Goodrich & Rosati LLP
Zanker Road Resource Management, Ltd.

MULTI YEAR INVESTORS

PRIVATE SECTOR

Accenture
AMD
AT&T
Benhamou Global Ventures LLC
Center for Corporate Innovation
Cogswell Polytechnical College
Comerica Bank
CommerceNet
Cypress Semiconductor Corporation
Deloitte & Touche LLP
El Camino Hospital Foundation
Google, Inc
Hewlett-Packard
Kaiser Permanente,
Santa Clara Medical Center
KPMG LLP
Lucile Packard Children's Hospital
Mckinsey & Company
Menlo College
Pacific Gas & Electric Company
San Jose Convention & Visitor's Bureau
San Jose/Silicon Valley Business Journal
San Jose State University
Sobrato Development Companies
Solectron
Stanford University
SummerHill Homes
SunPower Corporation
SVB Financial Group
TDA Group
Therma
Trident Capital
University of California, Santa Cruz
VoiceObjects, Inc
Wilmer Cutler Pickering Hale & Door LLP
Wilson Sonsini Goodrich & Rosati

PUBLIC SECTOR

City of East Palo Alto
City of Campbell
City of Fremont
City of Gilroy
City of Los Altos
City of Menlo Park
City of Milpitas
City of Monte Sereno
City of Morgan Hill
City of Mountain View
City of Newark
City of Palo Alto
City of Redwood City
City of San Carlos
City of San Jose
City of San Mateo
City of Santa Clara
City of Santa Cruz
City of Sunnyvale
City of Union City
County of San Mateo
County of Santa Clara
Town of Los Altos Hills
Town of Los Gatos